
R:BASE Technologies, Inc.

Help Manual

Version 11

Oterro 11 for Windows

Help Manual

by R:BASE Technologies, Inc.

Welcome to Oterro 11 for Windows!

A high-end performance solution for database application developers,
Oterro is a relational ODBC database engine ideal for use in a file
erver environment, with both 64-bit and 32-bit drivers included. Oterro
is the solution for programmers who are exceeding the limits of heir
current engine. It's the sophisticated high-end database engine that
you won't outgrow. This engine has been optimized for serious
custom application development. Oterro adheres to Codd's theory of
true relational database management. Oterro is able to operate in a
omplex multi-user environment at high capacity and high speed. In
short, Oterro 11 is the ODBC driver for the R:BASE database.

3Contents

3

Copyright © 1982-2024 R:BASE Technologies, Inc.

Table of Contents

Part I Introduction 19

... 201 Introducing Oterro 11

... 202 Copyrights

... 213 R:BASE for Windows

... 214 Oterro License Summary

... 215 Complimentary Support

Part II Programming 23

... 241 System Requirements

... 242 Windows Programming

... 243 OTERRO11.CFG File

... 254 Open Database Connectivity

Part III How to Use the Oterro Engine 26

... 271 Data Access Objects (DAO)

... 272 Configuring the Database Environment

... 283 Available Commands

... 294 Handling Data of Variable Lengths

... 295 Terminating Transactions and Disconnecting

... 306 Error Checking

... 317 Oterro Debug Setting

... 318 Retrieving Status and Error Information

... 319 General Programming Tips

Part IV Oterro Engine Functions 33

... 351 SQLAllocConnect

... 372 SQLAllocEnv

... 383 SQLAllocHandle

... 444 SQLAllocStmt

... 465 SQLBindCol

... 476 SQLBindParameter

... 487 SQLBrowseConnect

... 508 SQLBulkOperations

... 599 SQLCancel

... 6010 SQLCloseCursor

Oterro 11 Help Manual4

Copyright © 1982-2024 R:BASE Technologies, Inc.

... 6211 SQLColAttributes

... 6512 SQLColumnPrivileges

... 6713 SQLColumns

... 6914 SQLConnect

... 7115 SQLDataSources

... 7316 SQLDescribeCol

... 7517 SQLDescribeParam

... 7618 SQLDisconnect

... 7719 SQLDriverConnect

... 8020 SQLDrivers

... 8221 SQLEndTran

... 8422 SQLError

... 8523 SQLExecDirect

... 8724 SQLExecute

... 8925 SQLExtendedFetch

... 9226 SQLFetch

... 9327 SQLFetchScroll

... 9828 SQLForeignKeys

... 10129 SQLFreeConnect

... 10330 SQLFreeHandle

... 10631 SQLFreeEnv

... 10732 SQLFreeStmt

... 10933 SQLGetConnectAttr

... 11134 SQLGetConnectOption

... 11335 SQLGetCursorName

... 11536 SQLGetData

... 11737 SQLGetDiagRec

... 11938 SQLGetFunctions

... 12039 SQLGetStmtAttr

... 12240 SQLGetInfo

... 12641 SQLGetStmtOption

... 12842 SQLGetTypeInfo

... 13043 SQLMoreResults

... 13144 SQLNativeSql

... 13245 SQLNumParams

... 13346 SQLNumResultCols

... 13447 SQLParamOptions

... 13548 SQLPrepare

... 13749 SQLPrimaryKeys

5Contents

5

Copyright © 1982-2024 R:BASE Technologies, Inc.

... 13950 SQLProcedureColumns

... 14151 SQLProcedures

... 14352 SQLPutData

... 14453 SQLRowCount

... 14554 SQLSetConnectAttr

... 15055 SQLSetConnectOption

... 15156 SQLSetCursorName

... 15457 SQLSetEnvAttr

... 15758 SQLSetStmtAttr

... 16059 SQLSetPos

... 16160 SQLSetScrollOptions

... 16161 SQLSetStmtOption

... 16362 SQLSpecialColumns

... 16663 SQLStatistics

... 16864 SQLTablePrivileges

... 17065 SQLTables

... 17266 SQLTransact

Part V ODBC Reference Topics 175

... 1761 Connection Attributes

... 1762 Descriptors

.. 177Types of Descriptors

... 1773 Handles

.. 179Environment Handles

.. 179Connection Handles

.. 180Statement Handles

.. 180Descriptor Handles

.. 181State Transitions

... 1814 Multithreading

Part VI R:BASE Database Commands 183

... 1841 Reading Command Syntax

... 1852 Command Categories

... 1853 A

.. 185ALTER TABLE

.. 190APPEND

.. 191ATTACH

.. 193AUTOCHK

.. 196AUTONUM

... 1994 B

.. 199BREAK

... 1995 C

.. 199CALL

Oterro 11 Help Manual6

Copyright © 1982-2024 R:BASE Technologies, Inc.

.. 200CLEAR

.. 201CLOSE

.. 202COMMENT

.. 203COMMENT ON

.. 205CONTINUE

.. 205CONVERT

.. 206CREATE INDEX

.. 209CREATE SCHEMA

.. 210CREATE TABLE

.. 214CREATE VIEW

... 2176 D

.. 217DBCONN

.. 217DECLARE CURSOR

.. 220DELETE

.. 221DELETE DUPLICATES

.. 222DETACH

.. 223DROP

... 2267 F

.. 226FETCH

... 2288 G

.. 228GET

.. 229GOTO

.. 230GRANT

... 2349 I

.. 234IF/ENDIF

.. 236INSERT

... 23810 L

.. 238LABEL

.. 239LAUNCH

.. 242LOAD

... 24811 M

.. 248MIGRATE

... 24812 O

.. 248OPEN

.. 249OUTPUT

... 25113 P

.. 251PACK

.. 252PROJECT

.. 254PUT

... 25514 R

.. 255RELOAD

.. 256RENAME

.. 258RESET

.. 259REVOKE

.. 261RULES

... 26115 S

.. 261SATTACH

.. 264SCONNECT

.. 266SDETACH

.. 267SDISCONNECT

7Contents

7

Copyright © 1982-2024 R:BASE Technologies, Inc.

.. 267SELECT

... 270SELECT Functions

... 273TOP

... 274INNER JOIN

... 276INTO

... 277FROM

... 278EXCEPT

... 279LIMIT

... 279OUTER JOIN

... 282WHERE

... 287Sub-SELECT

... 287AS

... 289GROUP BY

... 291HAVING

... 293ORDER BY

... 294UNION

... 295HTML

.. 296SET

... 297AND

... 297ANSI

... 298AUTOCOMMIT

... 298AUTOCONVERT

... 298AUTODROP

... 299AUTORECOVER

... 299AUTOROWVER

... 299AUTOSKIP

... 299AUTOSYNC

... 299AUTOUPGRADE

... 300BELL

... 300BLANK

... 300BOOLEAN

... 300CAPTION

... 300CASE

... 300CHECKPROP

... 301CLEAR

... 301CLIPBOARD

... 302CMPAUSE

... 302COLOR

... 302COMPATIB

... 303CURRENCY

... 304DATE

... 305DEBUG

... 306DELIMIT

... 306ECHO

... 306EDITOR

... 307EOFCHAR

... 307EQNULL

... 308ERROR MESSAGE

... 308ERROR MESSAGES

... 309ERROR VARIABLE

... 310ESCAPE

... 310EXPLODE

... 311FASTFK

Oterro 11 Help Manual8

Copyright © 1982-2024 R:BASE Technologies, Inc.

... 311FASTLOCK

... 312FEEDBACK

... 312FILES

... 312FIXED

... 312FONT

... 313HEADINGS

... 313IDQUOTES

... 313INDEXONLY

... 313INSERT

... 314INTERVAL

... 314KEYMAP

... 314LAYOUT

... 314LINEEND

... 315LINES

... 315LOCK

... 316LOOKUP

... 316MANOPT

... 316MANY

... 316MAXTRANS

... 317MESSAGES

... 317MIRROR

... 317MOUSE

... 318MULTI

... 318NAME

... 318NAMEWIDTH

... 319NOCALC

... 320NOTE_PAD

... 320NULL

... 320ONELINE

... 321OTDEBUG

... 321PAGELOCK

... 322PAGEMODE

... 323PASSTHROUGH

... 323PLUS

... 323POSFIXED

... 324PRINTER

... 324PROCEDURE

... 324PROGRESS

... 324QUALCOLS

... 325QUOTES

... 325RBADMIN

... 325RECYCLE

... 326REFRESH

... 326REVERSE

... 326ROWLOCKS

... 327RULES

... 327SCRATCH

... 327SELMARGIN

... 328SEMI

... 328SEMI (Special Character)

... 328SERVER

... 328SHORTNAME

... 329SINGLE

9Contents

9

Copyright © 1982-2024 R:BASE Technologies, Inc.

... 329SORT

... 330SORTMENU

... 330STATICDB

... 330TIME

... 331TIMEOUT

... 331TOLERANCE

... 332TRACE

... 332TRANSACT

... 333UINOTIF

... 333USER

... 334UTF8

... 334VERIFY

... 335WAIT

... 336WALKMENU

... 336WHILEOPT

... 336WIDTH

... 337WINAUTH

... 337WINBEEP

... 338WRAP

... 338WRITECHK

... 339ZERO

... 339ZOOMEDIT

.. 339SET STATICVAR

.. 343SET VARIABLE

.. 346SWITCH/ENDSW

... 34816 T

.. 348TURBO

... 34917 U

.. 349UNLOAD

.. 351UPDATE

... 35518 W

.. 355WHERE

... 360ORDER BY

... 361GROUP BY

... 363HAVING

.. 365WHILE/ENDWHILE

Part VII R:BASE Database Functions 368

... 3691 Function Categories

... 3702 A

.. 370ABS

.. 370ACOS

.. 370ADDDAY

.. 370ADDFRC

.. 370ADDHR

.. 371ADDMIN

.. 371ADDMON

.. 371ADDSEC

.. 371ADDYR

.. 371AINT

.. 371ANINT

Oterro 11 Help Manual10

Copyright © 1982-2024 R:BASE Technologies, Inc.

.. 371ASIN

.. 372ATAN

.. 372ATAN2

... 3723 B

.. 372BRND

... 3724 C

.. 372CHAR

.. 372CHKCUR

.. 373CHKFILE

.. 373CHKFUNC

.. 373CHKKEY

.. 373CHKVAR

.. 373COS

.. 373COSH

.. 374CTR

.. 374CTXT

.. 374CVAL

... 376AND

... 376ANSI

... 376AUTOCOMMIT

... 377AUTODROP

... 377AUTOSKIP

... 377BELL

... 377BLANK

... 377BUILD

... 377CASE

... 377CLEAR

... 377CLIPBOARDTEXT

... 378COLOR

... 378COMPUTER

... 378CONNECTIONS

... 378CURRDIR

... 378CURRDRV

... 378CURRENCY

... 378CURRENTPRINTER

... 379DATABASE

... 379DATE

... 379DATE CENTURY

... 379DATE FORMAT

... 379DATE SEQUENCE

... 379DATE YEAR

... 379DBCOMMENT

... 380DBPATH

... 380DEBUG

... 380DELIMIT

... 380DRIVES

... 380ECHO

... 380EDITOR

... 381EOFCHAR

... 381EQNULL

... 381ERROR

... 381ERROR DETAIL

11Contents

11

Copyright © 1982-2024 R:BASE Technologies, Inc.

... 381ERROR VARIABLE

... 381ESCAPE

... 381EXPLODE

... 381FASTFK

... 382FASTLOCK

... 382FEEDBACK

... 382FILES

... 382FIXED

... 382HEADINGS

... 382IDQUOTES

... 382INSERT

... 382INTENSITY

... 382INTERVAL

... 383LAST BLOCK TABLE

... 383LAST ERROR

... 383LAYOUT

... 383LINEEND

... 383LINES

... 383LOOKUP

... 383MANOPT

... 383MANY

... 384MAXTRANS

... 384MDI

... 384MESSAGES

... 384MIRROR

... 384MULTI

... 384NAME

... 384NETUSER

... 384NOTE_PAD

... 384NULL

... 384OFFMESS

... 385OLDLINE

... 385ONELINE

... 385PAGEMODE

... 385PASSTHROUGH

... 385PLATFORM

... 385PLUS

... 385POSFIXED

... 385PORTS

... 386PRINTERS

... 386PRN_STATUS

... 386PRN_ORIENTATION

... 386PRN_SIZE

... 386PRN_SOURCE

... 386PRN_QUALITY

... 386PRN_COPIES

... 386PRN_COLORMODE

... 386PRN_DUPLEXMODE

... 386PRN_COLLATION

... 387QUALCOLS

... 387QUALKEYS

... 387QUALKEY TABLES

... 387QUOTES

Oterro 11 Help Manual12

Copyright © 1982-2024 R:BASE Technologies, Inc.

... 387REFRESH

... 387REVERSE

... 387ROWLOCKS

... 387RULES

... 387SCRATCH

... 387SCREENSIZE

... 388SELMARGIN

... 388SEMI

... 388SERVER

... 388SINGLE

... 388SORT

... 388SORTMENU

... 388STATICDB

... 388TIME

... 388TIME FORMAT

... 388TIME SEQUENCE

... 388TIMEOUT

... 389TOLERANCE

... 389TRACE

... 389TRANSACT

... 389USER

... 389USERAPP

... 389USERDOMAIN

... 389USERID

... 389VERIFY

... 389VERSION

... 390VERSION BITS

... 390VERSION BUILD

... 390VERSION SYSTEM

... 390WAIT

... 390WALKMENU

... 390WHILEOPT

... 390WIDTH

... 390WINBEEP

... 390WINDOWSPRINTER

... 391WRAP

... 391WRITECHK

... 391ZERO

... 391ZOOMEDIT

.. 391CVTYPE

... 3925 D

.. 392DATETIME

.. 392DECRYPT

.. 392DELFUNC

.. 392DEXTRACT

.. 392DIM

.. 393DLCALL

.. 398DLFREE

.. 398DLLOAD

.. 398DNW

.. 399DWE

.. 399DWRD

13Contents

13

Copyright © 1982-2024 R:BASE Technologies, Inc.

... 3996 E

.. 399ENCRYPT

.. 399ENVVAL

.. 399EXP

... 4007 F

.. 400FILENAME

.. 400FINDFILE

.. 400FLOAT

.. 400FORMAT

... 401Aligning Decimals

... 401Formatting Currency

... 401Formatting Text

... 401Punctuating Long Numbers

.. 402FV1

.. 402FV2

... 4028 G

.. 402GETDATE

.. 402GETKEY

.. 403GETVAL

... 403CheckMessageStatus

... 403GetDriveReady

... 403GetIPAddress

... 404GetLock

... 405GetMACAddr

... 406GetVolumeID

... 406PlayAndExit

... 407PlayAndWait

... 4079 H

.. 407HTML

... 40710 I

.. 407ICAP

.. 407ICAP1

.. 407ICAP2

.. 407ICAP3

.. 408IFCASEEQ

.. 408ICHAR

.. 408IDAY

.. 408IDIM

.. 408IDOY

.. 409IDWK

.. 409IFEQ

.. 409IFEXISTS

.. 409IFF

.. 410IFGE

.. 410IFGT

.. 410IFLE

.. 411IFLT

.. 411IFNE

.. 411IFNULL

.. 411IFRC

.. 411IFWINDOW

Oterro 11 Help Manual14

Copyright © 1982-2024 R:BASE Technologies, Inc.

.. 411IHASH

.. 413IHR

.. 413IINFO

.. 416ILY

.. 417IMIN

.. 417IMON

.. 417INT

.. 417ISALPHA

.. 417ISDIGIT

.. 417ISEC

.. 418ISLOWER

.. 418ISSPACE

.. 418ISTAT

... 419CURRNUMALLOC

... 419CURSORCOL

... 419CURSORROW

... 419DBSIZE

... 419DISKSPACE

... 419FORM_CONTROL_TYPE

... 420FORM_DIRTY_FLAG

... 420ISRUNTIME

... 420LIMITNUMALLOC

... 420MAXFREE

... 420MAXNUMALLOC

... 420MEMORY

... 420MOUSECOL

... 421MOUSEROW

... 421PAGECOL

... 421PAGEROW

... 421RX1SIZE

... 421RX2SIZE

... 421RX3SIZE

... 422RX4SIZE

... 422TOTALALLOC

... 422TOTALFREE

... 422TOTALLOCKS

... 422TOTALREADS

... 422TOTALWRITES

.. 423ISTR

.. 423ISUPPER

.. 423ITEMCNT

.. 424IWOY

.. 424IYR

.. 424IYR4

... 42511 J

.. 425JDATE

... 42512 L

.. 425LASTKEY

.. 425LAVG

.. 426LJS

.. 426LMAX

.. 426LMIN

15Contents

15

Copyright © 1982-2024 R:BASE Technologies, Inc.

.. 426LOG

.. 427LOG10

.. 427LSTDEV

.. 427LSUM

.. 427LTRIM

.. 427LUC

.. 428LVARIANCE

... 42813 M

.. 428MAKEUTF8

.. 428MOD

... 42914 N

.. 429NEXT

.. 429NINT

... 42915 P

.. 429PMT1

.. 429PMT2

.. 430PV1

.. 430PV2

... 43016 R

.. 430RANDOM

.. 430RATE1

.. 430RATE2

.. 431RATE3

.. 431RDATE

.. 431REVERSE

.. 431RJS

.. 431RNDDOWN

.. 432RNDUP

.. 433ROUND

.. 433RTIME

.. 434RTRIM

... 43417 S

.. 434SFIL

.. 434SGET

.. 434SIGN

.. 434SIN

.. 434SINH

.. 435SKEEP

.. 435SKEEPI

.. 435SLEN

.. 436SLOC

.. 436SLOCI

.. 436SLOCP

.. 437SMOVE

.. 437SOUNDEX

.. 437SPUT

.. 437SQRT

.. 437SRPL

.. 438SSTRIP

.. 438SSTRIPI

.. 439SSUB

Oterro 11 Help Manual16

Copyright © 1982-2024 R:BASE Technologies, Inc.

.. 439SSUBCD

.. 439STRIM

... 44018 T

.. 440TAN

.. 440TANH

.. 440TDWK

.. 440TERM1

.. 440TERM2

.. 441TERM3

.. 441TEXTRACT

.. 441TINFO

.. 442TMON

.. 442TRANSLATE

.. 442TRIM

... 44319 U

.. 443ULC

Part VIII R:BASE Reference Topics 444

... 4451 Aggregate Functions

... 4452 Binary Large Objects (BLOB)

.. 446Loading BLOB/LOB Data

.. 446Using Commands with BLOBs

... 4463 Configuration File

... 4474 Constraints

... 4485 Cursors Explained

.. 449Multi-Table Cursors

.. 450Non-Updatable Cursors

.. 450Nested Cursors

.. 452Resettable Cursors

.. 452Scrolling Cursors

.. 457Optimizing Cursors

.. 465Questions & Answers

... 4666 Database Files

... 4677 Data Types

... 4708 Indexes

.. 471Choosing the Columns to Index

.. 472Assigning and Removing an Index

.. 472Optimizing Indexes

.. 472Indexing Long TEXT Values

.. 474Using WHERE Clauses with Indexes

.. 475Using ORDER BY with Indexes

.. 475Using Index-Only Retrieval

.. 475Indexing Computed Columns

.. 476Index Efficiency

.. 477Smart Indexing

.. 477Summary

... 4779 Information Management with R:BASE

... 47810 International Characters

17Contents

17

Copyright © 1982-2024 R:BASE Technologies, Inc.

... 47911 Multi-User Considerations

.. 479Introduction to Using R:BASE on a Network

.. 480Other Multi-User Considerations

.. 481Clearing Buffers w ith the SET CLEAR Command

.. 481Managing Scratch Files ($$$)

.. 482Displaying Multi-User Locks

.. 482Using SET LOCK to Set Exclusive Table Locks

.. 483Using the SET VERIFY Command to Verify Data Entry

.. 483Using the SET ROWLOCKS Command to Lock Rows

.. 484Setting Up for Network Use

.. 484Sharing Network Resources

.. 485Setting the Multi-User Default

.. 485Concurrency Control

.. 485Resource Waiting

... 486Schema Reading Mode w ith SET STATICDB

.. 486Types of Locks

... 487Multi-User Concurrency Control and Locking

... 488Accessing Tables and Databases

.. 488Effects of the SET INTERVAL Command

.. 488Effects of the SET WAIT Command

.. 489Single-User Mode

... 48912 Purpose of a Rule

... 49013 Reserved Words

... 49214 SQL - Information

... 49315 Stored Procedures & Triggers

.. 494Creating Stored Procedures

.. 494Using Stored Procedures

... 495CALL

... 496GET

... 496SET PROCEDURE

... 496Examples

.. 497Restricted Commands

.. 498Stored Procedure System Tables

.. 499Triggers

... 499Using Triggers

... 500SYS_NEW

... 501SYS_OLD

... 50116 Table Joins

.. 502Join Types

.. 502More About OUTER JOIN

... 50317 Temporary Tables and Views

.. 504Using Temporary Tables/Views

.. 505Differentiate between Regular and Temporary Tables/Views

.. 506Advantages of Temporary Tables/Views

Part IX Troubleshooting 508

Part X Technical Support 511

Part XI Useful Resources 513

Oterro 11 Help Manual18

Copyright © 1982-2024 R:BASE Technologies, Inc.

Part XII Feedback 515

Index 517

Part

I

Oterro 11 Help Manual20

Copyright © 1982-2024 R:BASE Technologies, Inc.

1 Introduction

1.1 Introducing Oterro 11

A high-end performance solution for database application developers, Oterro is a full relational ODBC
database engine ideal for use in a file server environment, with both 64-bit and 32-bit drivers included.
Oterro is the solution for programmers who are exceeding the limits of their current engine. It's the
sophisticated high-end database engine that you won't outgrow. This engine has been optimized for
serious custom application development. Oterro adheres to Codd's theory of true relational database
management. Oterro is able to operate in a complex multi-user environment at high capacity and high
speed. In short, Oterro 11 is the ODBC driver for the R:BASE 11 database.

The Oterro Engine provides an interface between an application you create and a database. This version
of the Oterro Engine is intended for application developers who want to use other development tools for
creating powerful database management systems (DBMS) applications.

The Oterro Engine conforms to ANSI 1989 Level 2 SQL with 1992 extensions. The Oterro Engine is written
to the Microsoft Open Database Connectivity (ODBC) specification (Level 3), and therefore operates
within the ODBC framework.

1.2 Copyrights

Information in this document, including URL and other Internet web site references, is subject to change
without notice. The example companies, individuals, products, organizations and events depicted herein
are completely fictitious. Any similarity to a company, individual, product, organization or event is
completely unintentional. R:BASE Technologies, Inc. shall not be liable for errors contained herein or for
incidental consequential damages in connection with the furnishing, performance, or use of this material.
This document contains proprietary information, which is protected by copyright. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written consent of R:BASE Technologies, Inc. We reserve the right to make
changes from time to time in the contents hereof without obligation to notify any person of such revision
or changes. We also reserve the right to change the specification without notice and may therefore not
coincide with the contents of this document. The manufacturer assumes no responsibilities with regard to
the performance or use of third party products.

Products that are referred to in this document may be either trademarks and/or registered trademarks of
the respective owners. The publisher and the author make no claim to these trademarks.

The software described in this document is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of that agreement. Any unauthorized use or duplication
of the software is forbidden.

R:BASE Technologies, Inc. may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from R:BASE Technologies, Inc., the furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property.

Trademarks

R:BASE®, Oterro®, RBAdmin®, R:Scope®, R:Mail®, R:Charts®, R:Spell Checker®, R:Docs®, R:BASE
Editor®, R:BASE Plugin Power Pack®, R:Style®, RBZip®, R:Mail Editor®, R:BASE Dependency Viewer®,
R:Archive®, R:Chat®, R:PDF Form Filler®, R:FTPClient®, R:SFTPClient®, R:PDFWorks®, R:Magellan®,
R:WEB Reports®, R:WEB Gateway®, R:PDFMerge®, R:PDFSearch®, R:Documenter®, RBInstaller®,
RBUpdater®, R:AmazonS3®, R:GAP®, R:Mail Viewer®, R:Capture®, R:Synchronizer®, R:Biometric®,
R:CAD Viewer®, R:DXF®, R:Twain2PDF®, R:Tango®, R:Scheduler®, R:Scribbler®, R:SmartSig®,
R:OutLink®, R:HASH®, R:JobTrack®, R:TimeTrack®, R:Manufacturing®, R:GeoCoder®, R:Code®,
R:Fax®, R:QBDataDirect®, R:QBSynchronizer®, R:QBDBExtractor®, and Pocket R:BASE® are
trademarks or registered trademarks of R:BASE Technologies, Inc. All Rights Reserved. All other brand,
product names, company names and logos are trademarks or registered trademarks of their respective
companies.

Introduction 21

Copyright © 1982-2024 R:BASE Technologies, Inc.

Windows, Windows 11-10, Windows Server 2022-2012, Bing Maps, Word, Excel, Access, SQL Server, and
Outlook are registered trademarks of Microsoft Corporation. OpenOffice is a registered trademark of the
Apache Software Foundation.

Printed: April 2024 in Murrysville, PA

First Edition

1.3 R:BASE for Windows

R:BASE is an Industrial-Strength, Multi-User Relational Database. But R:BASE is not just a Database
Management System; it is a total GUI development environment for all Windows desktop and network
applications. R:BASE for Windows is the ideal Database Management Suite for creating and maintaining
your mission critical data with a true graphical user interface. Since its introduction in 1981 as the first
PC-based database management system based on Dr. Codd's relational model, R:BASE has led as the
first 32-bit DBMS in its class, providing programming-free application development, automatic multi-user
capabilities, 4GL (a full-featured programming language in the R:BASE base product) and embedded
ANSI SQL. And now with R:BASE for Windows, we have added a whole new look and feel to enhance the
applications you develop in R:BASE. You can rapidly produce the type of results that previously would
have required various third party development tools. Simply using native controls, you can now design
cool applications at a fraction of the cost and development time when compared to other database and
development tools available.

1.4 Oterro License Summary

Oterro is licensed in a variety of ways allowing for easy customization. You should refer to the license
that shipped with your product for exact details on your licensing. In general, there are two types or
categories of licensing. The first type allows for a certain number of connections to a database (this
number includes all connections, whether made by Oterro or by other R:BASE products). If this count is
reached, new connections to the database cannot be made by the limited version of Oterro. Your other
unlimited products will not be affected. These numbered versions of Oterro are available in 1, 5, 10, and
25 user counts. These licenses are not cumulative. For example, purchasing a 1 user and a 5 user does
not allow 6 users. The second type allows for unlimited connections and comes in three flavors: Site
Unlimited (not distributable), Single Application Unlimited (distributable with a single application) and Multi
Application Unlimited (which can be distributed with any number of applications).

1.5 Complimentary Support

30 DAY LIMITED COMPLIMENTARY TECHNICAL SUPPORT

A. LICENSEE RESPONSIBILITIES.

1. To help us expedite the process and provide high quality assistance, the licensee must provide
proof of purchase. Proof of purchase is defined as the following: registration number, purchase
date, version and build number, and company or individual to which product is registered.

2. To have operating system, workstations, and local network installed and functional. R:BASE
Technologies will NOT be responsible for resolving issues not pertaining to the software product.

3. Our support staff deals with advanced issues, therefore the person contacting R:BASE Technologies
for assistance should be the system administrator or have other R:BASE/SQL experience and be
able to understand and implement the advice given.

4. To have the database, application, and command files being reviewed, safely backed-up before
attempting assistance. R:BASE Technologies will NOT be held responsible for lost data or corruption
as a result of advice given.

B. R:BASE TECHNOLOGIES, INC. RESPONSIBILITIES.

Oterro 11 Help Manual22

Copyright © 1982-2024 R:BASE Technologies, Inc.

1. To provide quality assistance in a timely manner to aid in the installation of the product and
elementary conversion of database, application, and command files within 30 days of the date of
purchase.

2. To provide a reasonable solution for any solvable issue. Not all issues may be solved, and
therefore we will acknowledge the existence of known issues, or bugs, which we are presently
aware of, that have no reasonable work-around.

R:BASE Technologies reserves the right to limit the amount of support time allotted to a maximum of 2
HOURS during the 30-Day Complimentary Technical Support period. We also reserve the right to limit the
quantity of calls from a particular licensee to 30 MINUTES in a single day. Issues are dealt with on a
case-by-case basis, and are handled at the discretion of the support agent assigned to the case.
Complimentary Support is limited to INSTALLATION and ELEMENTARY CONVERSION related issues ONLY.
Our support hours are Monday through Friday, from 10:00 AM to 6:00 PM (EST).

For application, design, or advanced conversion assistance, R:BASE Technologies offers Technical
Support Plans of various types to meet your needs. Please visit the Support page at
https://www.rbase.com/support for details and pricing.

https://www.rbase.com/support

Part

II

Oterro 11 Help Manual24

Copyright © 1982-2024 R:BASE Technologies, Inc.

2 Programming

The Oterro Engine allows developers programming in ODBC compliant products to manipulate databases
and their associated tables and views with full support for security, data integrity, and relational
flexibility. For database applications using a high-level programming language, the Oterro Engine
effectively meets the demand for speed and flexibility.

The Oterro Engine provides functions for loading and manipulating databases in both single- and multi-
user environments. These functions provide Core, Level 1, and Level 2 ODBC conformance for the
developer.

2.1 System Requirements

The following system specifications are recommended for the optimal use of R:BASE and R:BASE-related
software.

Workstation Hardware

· 2-Core 2GHz+ CPU
· 2 GB of available RAM (4 GB recommended)
· 2 GB of available hard disk space
· 1024x768 or higher resolution video adapter and display
· Standard mouse or compatible pointing device
· Standard keyboard

Server Hardware

· 2-Core 2GHz+ CPU
· 6 GB of available RAM (8 GB recommended)

Operating System

· Microsoft Windows 11 (Professional)
· Microsoft Windows 10 (Professional)
· Microsoft Windows Server 2022
· Microsoft Windows Server 2019
· Microsoft Windows Server 2016
· Microsoft Windows Server 2012, 2012 R2

Network

· Ethernet infrastructure (Gigabyte recommended)
· Internet connection recommended, but not required, for license activation, software updates, and

support
· Anti-virus programs should exclude the R:BASE program, and any add-on product, executable and

database files

2.2 Windows Programming

The following discussion assumes a working knowledge of Windows software development.

The Oterro Engine is supplied in a Windows Dynamic Link Library (DLL) format. The DLL can be used by
Windows developers who use any development environment supporting access to DLLs.

2.3 OTERRO11.CFG File

Make sure an OTERRO11.CFG file is available with the appropriate settings when using the Oterro Engine.
Use the OTERRO11.CFG file to set required database environment settings, such as MULTI-USER. An
OTERRO11.CFG file is included with the Oterro installation and should be located in either of the below

Programming 25

Copyright © 1982-2024 R:BASE Technologies, Inc.

folder locations, based upon how the product installer was executed at the User Info screen (Install App
for: Anyone/Only me).

C:\Users\Public\RBTI
C:\Users\<UserName>\RBTI

If no OTERRO11.CFG file is present, the Oterro Engine creates a new one. If you are working in the
Visual Basic development environment, the OTERRO11.CFG is created where you started Visual Basic. If
you are running a compiled application, the OTERRO11.CFG is created in the directory with the compiled
application.

The OTERRO11.CFG file sets up the default database environment. Settings can be changed by calling
the SQLSetConnectOption function or by editing the OTERRO11.CFG file.

2.4 Open Database Connectivity

Open Database Connectivity (ODBC), which is included in the Oterro Engine, is Microsoft’s initiative for a
standard SQL interface to database products. The Microsoft ODBC specification includes three levels of
conformance: Core, Level 1, and Level 2 and the Oterro Engine supports all of these. Because Microsoft’s
ODBC specification is the basis for the Oterro Engine, the Oterro Engine can be used with the Microsoft
ODBC Driver Manager and the ODBC SDK. The ODBC interface allows Windows applications to access
database engines, such as the Oterro Engine, using SQL as a standard language. Also, ODBC allows the
developer to write one application that has the potential to access data from databases created with
different ODBC-compliant products. For example, you could write an application that would select data
from an Oterro database as well as SQL Server or Oracle databases, separately or all at the same time,
depending on which engines (drivers) were installed.

The ODBC driver manager (32-bit or 64-bit) must be configured for use with the Oterro Engine (the
ODBC server). The function calls in the Oterro Engine are exactly the same as those in the ODBC Driver
Manager, so no additional code needs to be written.

Part

III

How to Use the Oterro Engine 27

Copyright © 1982-2024 R:BASE Technologies, Inc.

3 How to Use the Oterro Engine

The following provides guidelines for developing applications using the Oterro Engine.

Since there are numerous versions of Visual Basic, the following discussions are brief; such as only the
data control property settings that are required to make a connection to an Oterro database are covered
here.

3.1 Data Access Objects (DAO)

You can access and manipulate data in an Oterro database table by using the Microsoft data control
(DAO) with a remote ODBC database. The following describes the required property settings when using
data controls with the Oterro Engine.

DAO Control Properties

Set data control properties as follows:

Property Setting

Connect Specifies the Oterro database name and must at least contain ODBC. You must type in
ODBC; and the connection string. ODBC is not available from the drop down list. The
Oterro database must be registered in the ODBC administrator. Enter the entire
connection string in the following format:

ODBC;DSN=C:
\RBTI\OTERRO11\samples\bluzvan\bluzvan;UID=none;PWD=none;

Elements that are not included in the connection string will be prompted for.

DatabaseNam
e

Leave the database name blank.

RecordSource A table name.

The above data control settings retrieve all rows from a table. To select specific rows, you must set the
Options properties setting to 64 and enter a SELECT command including WHERE clause as the
RecordSource property. The result set that is generated cannot be updated.

3.2 Configuring the Database Environment

According to the ODBC specifications, all ODBC-compliant drivers (such as the Oterro Engine), by
default, connect databases with transaction processing and AUTOCOMMIT on.

Although transaction processing works well when it is on, problems can occur, such as needing to recover
databases that have had failed transactions. Because problems can occur, it might be prudent to turn
transaction processing off when developing an application. You can turn transaction processing off by
calling the function SQLSetConnectOption with the appropriate arguments, or by setting TRANSACT off in
the OTERRO11.CFG file. The OTERRO11.CFG file is installed with the product in the C:\RBTI\Oterro11
directory or is created when the database is connected if a CFG file is not found.

If the Oterro Engine SQLSetConnectOption is set on or AUTORECOVER is on in the OTERRO11.CFG file,
databases with failed transactions are recovered automatically when you connect to the database. The
default setting for AUTORECOVER is ON.

Database Modes

Setting OTERRO11.CFG Options

ACCESS MODE N/A READ ONLY or READ WRITE

AUTO COMMIT AUTOCOMM ON or OFF

AUTO CONVERT AUTOCONV ON or OFF

AUTO RECOVER AUTORECO ON or OFF

AUTO ROWVER AUTOROWV ON or OFF

AUTO SYNC AUTOSYNC ON or OFF

AUTO UPGRADE AUTOUPGR ON or OFF

Oterro 11 Help Manual28

Copyright © 1982-2024 R:BASE Technologies, Inc.

FASTLOCKS FASTLOCK ON or OFF

MAX # of TRANSACTIONS MAXTRANS 1 to 255

MULTI-USER MODE MULTI ON or OFF

STATICDB STATICDB ON or OFF

TRANSACTION MODE TRANSACT ON or OFF

The tables below list the database commands available through SQLExecDirect as well as available SET
commands that can also be sent through SQLExecDirect or that can be set in the OTERRO11.CFG file.
Settings can be retrieved with the SQLGetConnectOption function after allocating a connection handle.

3.3 Available Commands

ALTER TABLE DROP

ATTACH* GRANT

AUTOCHK* INSERT

AUTONUM* PACK*

COMMENT ON RELOAD*

CREATE INDEX RENAME*

CREATE SCHEMA REVOKE

CREATE TABLE RULES*

CREATE VIEW SELECT

DELETE SET* (see below)

DELETE DUPLICATES* UNLOAD*

DETACH* UPDATE

* Denotes Oterro database-specific commands that are non-SQL, but are helpful in Oterro databases.

Available SET Commands

Special Characters

SET Command Default

BLANK (space)

DELIMIT , (comma)

MANY %

NULL -0-

QUOTES ' (single quote)

SINGLE _

IDQUOTES ` (reverse quote)

Operating Conditions

SET Command Default

AUTOCOMMIT ON

MANOPT OFF

AUTOCONVERT ON

MIRROR OFF

AUTORECOVER ON

NAME USER**************

AUTOROWVER ON

NOTE_PAD 10

AUTOSYNC ON

NULL -0-

AUTOUPGRADE ON

QUALCOLS 10

CASE OFF

RULES ON

CLEAR ON

SCRATCH ON

How to Use the Oterro Engine 29

Copyright © 1982-2024 R:BASE Technologies, Inc.

CURRENCY $ PREFIX 2 B

SORT OFF

DATE CENTURY 19

TIME FORMAT HH:MM:SS

DATE FORMAT YYYY-MM-DD

TIME SEQUENCE HHMMSS

DATE SEQUENCE YYYYMMDD

TOLERANCE 0

DATE YEAR 0

USER PUBLIC

FASTFK OFF

WAIT 4

INTERVAL 5

3.4 Handling Data of Variable Lengths

All functions that point to data of a variable length have an associated length argument containing column
names and resulting parameter values for textual data types. These length arguments are useful for
programming languages that do not use null-terminated strings and for passing binary data.

The length parameter has the following semantics when used on input (the application is passing data to
the Oterro Engine), and output (the application is receiving data from the Oterro Engine).

Length Parameter for Input:

length >= 0
This indicates the actual length.

Length Parameter for Output:

An application always allocates memory for output buffers and must tell the Oterro Engine the length of
the output buffer; conversely, the Oterro Engine must tell the application how much data was actually
placed in the buffer, and have a way to pass indicator data—such as truncation, or a NULL (database)
value for a particular column in a particular row—to the application:

Length=SQL_NULL_DATA (-1)
This tells the application that null data was passed.

Length=SQL_SUCCESS_WITH_INFO (1)
This tells the application that the output buffer was smaller than the target data, resulting in an error
code.

3.5 Terminating Transactions and Disconnecting

When database access is complete, the statement, connection, and environment handles must be
released using SQLFreeStmt, SQLDisconnect, SQLFreeConnect, and SQLFreeEnv. SQLDisconnect frees
and drops any allocated statement handles as if SQLFreeStmt with SQL_DROP was called.

Before releasing the connection handle, the database must be disconnected. When pending transactions
exist on the connection, the disconnect is rejected; therefore, the application must ensure that all
transactions are committed or rolled back before disconnecting. Use SQLTransact to commit or rollback
the current transaction. If this cannot be done, a disconnect can be attempted; however, look for the
error SQLSTATE 25000 to determine if a commit or rollback must be performed. For an example of
terminating and disconnecting, see the code examples for SQLDisconnect.

NOTE: When using Visual Basic DAO data controls, the database is disconnected only on exit of the
application. When using Visual Basic RemoteDataControls, code can be written in the application to
disconnect the database. Be sure to exit the application using the SQLFreeStmt, SQLDisconnect,
SQLFreeConnect, or SQLFreeEnv commands as otherwise, temporary files with the .$$$ extension will
not be deleted.

Oterro 11 Help Manual30

Copyright © 1982-2024 R:BASE Technologies, Inc.

3.6 Error Checking

Error information is available from the environment, connection, and statement handles. In general,
when a function deals with a handle other than allocating or freeing it, error information is stored in the
handle used.

When an Oterro Engine function fails, it returns SQL_ERROR, or if the error is non-fatal, it returns
SQL_SUCCESS_WITH_INFO. To get additional information about these errors (if available), call SQLError
with the appropriate handles as arguments. The information provided consists of the error-code number
for whatever data source was used, the SQLSTATE and the database error-message text. (SQLSTATE is
a five character string with a null termination character.) For more information, see SQLError.

Error codes

Return Value Value Description

SQL_SUCCESS 0 The function completed successfully; no additional
information is available.

SQL_SUCCESS_WITH_INFO 1 The function completed successfully; warning or
additional information is available by calling
SQLError.This return value usually indicates value
truncation.

SQL_NO_DATA_FOUND 100 A return code from SQLFetch or SQLError indicates that
all rows from a result set have been fetched.

SQL_ERROR -1 The function failed—check SQLError for more specific
failure information.

SQL_INVALID_HANDLE -2 The function failed due to a null or invalid connection or
statement handle, indicating a programming error. No
additional information is available.

Use SQLError to perform error checking where appropriate. For an example of establishing connections,
see the code examples for SQLAllocConnect.

When SQL_INVALID_HANDLE or SQL_NO_DATA_FOUND is returned, no further information is available
from the Oterro Engine.

After a connection to a database is made, the main section of the application is run. Running the
application involves calling several functions to execute SQL statements and retrieve results. One of the
primary goals of an ODBC/Oterro Engine application is to handle recoverable errors, such as truncation
and syntax errors, and to report fatal or severe errors. Handling recoverable errors and reporting fatal
errors is accomplished by making calls to SQLError whenever an error is returned.

The statement handle is the structure associated with all SQL statements and other data access and
manipulation functions. A statement handle is not a thread of statement execution; it represents a single
SQL statement. A statement handle can be used repeatedly by using SQLFreeStmt. Before reusing the
statement handle, you must close any cursor that might have been opened on it by a statement returning
a result set. Closing a cursor is done by calling SQLFreeStmt with the option SQL_CLOSE. SQLFreeStmt
can also free bound columns, free parameters on SQL statements, and totally free the statement handle.

After executing an SQL statement, use the SQLGetData function to retrieve the results from the table
queried. Presentation of these results is under the control of the developer. Several other functions, such
as SQLNumResultCols and SQLColAttributes, are useful for determining display information, such as
column number and size.

When data is retrieved from a result set, SQLFetch is called first. When SQLFetch successfully returns, it
may be followed by a call to SQLGetData to get the actual data for a column.

For an example of executing SQL statements and retrieving results, see the code examples for
SQLExecDirect or SQLTables.

NOTE: When using DAO or RDC, these functions are automatically handled by the data control and
bound objects. However, using RDC, you can access the statement, connection, and environment
handles generated by the data control: RDCname.environment.henv, RDCname.connection.hdbc,
RDCname.resultset.hstmt.

How to Use the Oterro Engine 31

Copyright © 1982-2024 R:BASE Technologies, Inc.

3.7 Oterro Debug Setting

For Oterro debugging, you can add the OTDEBUG setting in the Oterro configuration file, which creates a
log file to help understand a possible issue.

The following examples provide the supported use of the OTDEBUG setting in the configuration file:

a) The OTDEBUG setting does not appear in the CFG file, which means that no debug log file is
created.

b) OTDEBUG OFF (result is the same as a)

c) OTDEBUG ON (Debug log file is created within C:\oterro.log)

d) OTDEBUG ON D:\OT_TEST\MyTest.log (Debug log file MyTest.log is created within D:
\OT_TEST)

Important: The debug setting and logging adds overhead to the Oterro engine and performance will
decrease. After logging has been captured for a desired event where an issue occurs, the debug setting
should be set to OFF in the configuration file.

3.8 Retrieving Status and Error Information

After a connection to a database has been made, error handling is critical. The most efficient way to
check errors is to create a function to dump all errors for the environment, connection, and statement
handles. For the Visual Basic examples included in this product, error checking is done automatically by
defining a function that always calls SQLError when an error occurs. The error-checking function defined
in the example is ErrorCheck.

As soon as you retrieve an error from the Oterro Engine, the error message is displayed even when it is
truncated, and it cannot be displayed again. To ensure accommodation of the entire error message,
specify a buffer of approximately 512 characters.

When truncation occurs in functions other than SQLGetData, the length of the output data is greater than
or equal to the length of the given buffer. The actual length of the textual output-data is the length of the
buffer minus one byte for the null terminator character. The required length of the buffer is the length of
the output data (supplied by the Engine) plus one byte for the null termination character.

ODBC allows multiple error codes on one handle. To ensure cross-platform compatibility, continue
reading errors until SQLError returns SQL_NO_DATA_FOUND. In the future, the Oterro Engine might
return more than one error code; therefore, your code is prepared for upward compatibility.

For code examples of retrieving status and error information, see SQLError.

NOTE: Not applicable when using DAO as you don't have access to the handles. However, using RDC,
you can access the statement, connection, and environment handles generated by the data control:
RDCname.environment.henv, RDCname.connection.hdbc, RDCname.resultset.hstmt.

3.9 General Programming Tips

Designing your Application—Programming languages, such as Visual Basic, provide simple ways to use
Windows controls. Design and program the user interface before trying to make the Oterro Engine
function calls. After you have written and tested the user interface, start plugging in the function calls to
the database.

Reusing Code—So that you don't duplicate your efforts, you can use one set of code for both buttons and
menu commands. For example, Windows applications commonly use toolbars with tools that perform the
same actions as menu commands. For a File Open button, which is the same as the File: Open menu
command, you don't have to duplicate the code to connect to the database. Write the code to connect the
File: Open menu command in a procedure called FILEOPEN. Then, for the button, simply call the existing
FILEOPEN function.

Oterro 11 Help Manual32

Copyright © 1982-2024 R:BASE Technologies, Inc.

Debugging—Several methods for debugging your application can be found in program languages and
software development kits. Regardless of the method used, the Oterro Engine DLL cannot be directly
debugged. However, the ODBC SDK provides tools that capture the actual commands being returned
from the Oterro Engine. For more information about this method, refer to the respective manual(s).

Recovering Databases—Running applications with transaction processing set to on has the potential of
leaving the database in an unusable state when transactions have been corrupted. When transactions are
corrupted, connections to the database will fail. In order to restore the database to a working state, you
need to be sure the AUTORECO is set to on in the SQLSetConnectOption or in the OTERRO11.CFG file.

Part

IV

Oterro 11 Help Manual34

Copyright © 1982-2024 R:BASE Technologies, Inc.

4 Oterro Engine Functions

This chapter includes the description, syntax, arguments, return values, related functions, errors, and
code examples in Visual Basic for the Oterro Engine functions.

The table below groups the functions by categories of functionality: Driver Manager Specific Functions,
Establishing and Freeing Connections, Executing SQL Statements, Retrieving Data and Values, Controlling
Transactions, Handling Data and Values, Accessing the Data Dictionary, and Visual Basic Non-Supported
Functions.

SQL Functions grouped by category

Category Function

Driver Manager Specific Functions SQLDrivers
SQLDataSources

Establishing and Freeing Connections

(Although these functions are not supported in direct
calls to the ODBC API through Visual Basic, they are
used in the underlying code for many of the Data
Controls and Remote Data Objects.)

SQLAllocConnect
SQLAllocEnv
SQLAllocHandle
SQLBrowseConnect
SQLConnect
SQLDisconnect
SQLDriverConnect
SQLFreeConnect
SQLFreeEnv
SQLGetConnectAttr
SQLGetConnectOption
SQLGetDiagRec
SQLGetStmtAttr
SQLSetConnectAttr
SQLSetConnectOption
SQLSetEnvAttr
SQLSetStmtAttr

Executing SQL Statements SQLAllocStmt
SQLBulkOperations
SQLCloseCursor
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll
SQLFreeHandle
SQLFreeStmt
SQLGetCursorName
SQLNativeSql
SQLPrepare
SQLSetCursorName

Retrieving Data and Values SQLColAttributes
SQLDescribeCol
SQLGetData
SQLNumResultCols
SQLRowCount

Controlling Transactions SQLCancel
SQLEndTran
SQLTransact

Handling Data and Values SQLError
SQLGetFunctions
SQLGetInfo
SQLGetStmtOption
SQLSetScrollOptions
SQLSetStmtOption

Accessing the Data Dictionary SQLColumnPrivileges
SQLColumns

Oterro Engine Functions 35

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLForeignKeys
SQLGetTypeInfo
SQLMoreResults
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

Functions not supported in Visual Basic

(Although these functions are not supported in direct
calls to the ODBC API through Visual Basic, they are
used in the underlying code for many of the Data
Controls, and RemoteDataObjects.)

SQLBindCol
SQLBindParameter
SQLDescribeParam
SQLNumParams
SQLParamOptions
SQLPutData

4.1 SQLAllocConnect

SQLAllocConnect allocates the connection handle required for connecting to any database with the Oterro
Engine and associates it with the environment handle specified by henv.

Syntax

RETCODE = SQLAllocConnect (henv, hdbc)

Arguments

Type Argument Use Description

Long henv Input The environment handle

Long hdbc Output A pointer to storage for the connection handle

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

When SQLAllocConnect returns SQL_ERROR, then the value to which hdbc points is set to zero. You can
call the function SQLError for more information concerning the error. When you call SQLError for more
information, SQL_NULL_HSTMT and SQL_NULL_HDBC must be passed for the hstmt and hdbc arguments
in the SQLError function.

A valid environment handle must be established before allocating a connection. See SQLAllocEnv.

One connection handle is required for each connection to any database. Multiple connections to a single
database are available when the database is on a network server and the Oterro database restrictions on
multi-user access are satisfied (see the Multi-User Mode entry in Chapter 5), such as enabling the multi-
user mode using the SQLSetConnectOption. Each user connecting to the same database must have the
same database environment mode. This is achieved by setting MULTI, STATICDB, and TRANSACT the
same for each user. Use the SQLSetConnectOption function or the OTERRO11.CFG file to set the mode.

CAUTION: If you specify a pointer to a connection handle that has already been allocated,
SQLAllocConnect overwrites the pointer regardless of its contents.

Oterro 11 Help Manual36

Copyright © 1982-2024 R:BASE Technologies, Inc.

Related Functions

Function Description

SQLConnect Opens a connection to a database.

SQLBrowseConnect Retrieves values required to connect to a data source.

SQLDisconnect Closes the connection to a database.

SQLDriverConnect Prompts for information to open a connection to a database.

SQLFreeConnect Frees the connection handle.

SQLGetConnectOption Queries the status of a connection option.

SQLSetConnectOption Sets a database connection option.

Errors

SQLSTATE Description

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1009 An invalid argument value—a null pointer was passed.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLAllocConnect Lib "ODBC32.DLL" (ByVal henv&, hdbc&) As Integer

CODE:

Global szConnectOut As String * 512
Global cbConnectOut As Integer
Global dbstr As String
Global dbdir As String

Private Sub fdrvconn_Click()
Dim i As Integer
retcode = SQLAllocEnv(henv&)
retcode = SQLAllocConnect(henv&, hdbc&)

errorcheck retcode
retcode = SQLDriverConnect(hdbc&, hwnd&, dbstr, SQL_NTS, szConnectOut,
255, cbConnectOut, SQL_DRIVER_COMPLETE)
If retcode <> 0 Then

errorcheck retcode
GoTo lend

End If
'get the database path
retcode = SQLGetInfo(hdbc&, SQL_DATABASE_NAME, szConnectOut, 512,
cbConnectOut)

errorcheck retcode
dbstr = Chop(szConnectOut)
i = InStr(dbstr, "\") dbdir = Left$(dbstr, i)
Do While i <> 0

i = InStr(i + 1, dbstr, "\")
If i <> 0 Then

dbdir = Left$(dbstr, i)
End If

Loop retcode = SQLAllocStmt(hdbc&, hstmt&)
errorcheck retcode

lend:

Oterro Engine Functions 37

Copyright © 1982-2024 R:BASE Technologies, Inc.

End Sub

4.2 SQLAllocEnv

SQLAllocEnv allocates an environment handle used for maintaining information on the current
connections to the Oterro Engine.

Syntax

RETCODE = SQLAllocEnv (henv)

Arguments

Type Argument Use Description

Long henv Output A pointer to storage for the environment handle.

Return Values

SQL_SUCCESS, or SQL_ERROR

Comments

If SQLAllocEnv returns SQL_ERROR, the function sets henv to zero.

Only one environment handle should be allocated and used at a time.

The environment handle must be created before allocating a connection handle.

Caution: If you specify a pointer to an environment handle that has already been allocated, SQLAllocEnv
overwrites the pointer regardless of its previous contents.

Related Functions

Function Description

SQLFreeEnv Frees the environment handle.

Errors

Because there is no allocated handle to pass information, no SQLSTATE can be returned.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLAllocEnv Lib "ODBC32.DLL" (phenv&) As Integer

CODE:
Global szConnectOut As String * 512
Global cbConnectOut As Integer
Global dbstr As String
Global dbdir As String

Private Sub fdrvconn_Click()
 Dim i As Integer

Oterro 11 Help Manual38

Copyright © 1982-2024 R:BASE Technologies, Inc.

 retcode = SQLAllocEnv(henv&)
 retcode = SQLAllocConnect(henv&, hdbc&)
 errorcheck retcode
 retcode = SQLDriverConnect(hdbc&, hwnd&, dbstr, SQL_NTS, szConnectOut,
255, cbConnectOut, SQL_DRIVER_COMPLETE)
 If retcode <> 0 Then
 errorcheck retcode
 GoTo lend
 End If
 'get the database path
 retcode = SQLGetInfo(hdbc&, SQL_DATABASE_NAME, szConnectOut, 512,
cbConnectOut)
 errorcheck retcode
 dbstr = Chop(szConnectOut)
 i = InStr(dbstr, "\")
 dbdir = Left$(dbstr, i)
 Do While i <> 0
 i = InStr(i + 1, dbstr, "\")
 If i <> 0 Then
 dbdir = Left$(dbstr, i)
 End If
 Loop
 retcode = SQLAllocStmt(hdbc&, hstmt&)
 errorcheck retcode
lend:
End Sub

4.3 SQLAllocHandle

SQLAllocHandle allocates an environment, connection, statement, or descriptor handle.

This function, added in Oterro 3.0, is a generic function for allocating handles that replaces the ODBC 2.0
functions SQLAllocConnect, SQLAllocEnv, and SQLAllocStmt. To allow applications calling SQLAllocHandle
to work with ODBC 2.x drivers, a call to SQLAllocHandle is mapped in the Driver Manager to
SQLAllocConnect, SQLAllocEnv, or SQLAllocStmt, as appropriate.

Syntax

RETCODE = SQLAllocHandle(HandleType,InputHandle,OutputHandlePtr)

Arguments

Type Argument Use Description

Intege
r

HandleType Input The type of handle to be allocated by SQLAllocHandle. Must be one of the
following values:
SQL_HANDLE_ENV
SQL_HANDLE_DBC
SQL_HANDLE_DESC
SQL_HANDLE_STMT

Long InputHandle Input The input handle in whose context the new handle is to be allocated. If
HandleType is SQL_HANDLE_ENV, this is SQL_NULL_HANDLE. If
HandleType is SQL_HANDLE_DBC, this must be an environment handle,
and if it is SQL_HANDLE_STMT or SQL_HANDLE_DESC, it must be a
connection handle.

Oterro Engine Functions 39

Copyright © 1982-2024 R:BASE Technologies, Inc.

Long OutputHandlePt
r

Output Pointer to a buffer in which to return the handle to the newly allocated data
structure.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, or SQL_ERROR

When allocating a handle other than an environment handle, if SQLAllocHandle returns SQL_ERROR, it
sets OutputHandlePtr to SQL_NULL_HDBC, SQL_NULL_HSTMT, or SQL_NULL_HDESC, depending on the
value of HandleType, unless the output argument is a null pointer. The application can then obtain
additional information from the diagnostic data structure associated with the handle in the InputHandle
argument.

Environment Handle Allocation Errors

Environment allocation occurs both within the Driver Manager and within each driver. The error returned
by SQLAllocHandle with a HandleType of SQL_HANDLE_ENV depends on the level in which the error
occurred.

If the Driver Manager cannot allocate memory for *OutputHandlePtr when SQLAllocHandle with a
HandleType of SQL_HANDLE_ENV is called, or the application provides a null pointer for OutputHandlePtr,
SQLAllocHandle returns SQL_ERROR. The Driver Manager sets *OutputHandlePtr to SQL_NULL_HENV
(unless the application provided a null pointer, which returns SQL_ERROR). There is no handle with which
to associate additional diagnostic information. (If the driver has additional diagnostic information, it will
put the information on a skeletal handle that it allocates; the Driver Manager will read the information
from the diagnostic structure associated with this handle.)

The Driver Manager does not call the driver-level environment handle allocation function until the
application calls SQLConnect, SQLBrowseConnect, or SQLDriverConnect. If an error occurs in the driver-
level SQLAllocHandle function, then the Driver Manager–level SQLConnect, SQLBrowseConnect, or
SQLDriverConnect function returns SQL_ERROR. The diagnostic data structure contains SQLSTATE IM004
(Driver's SQLAllocHandle failed), followed by a driver-specific SQLSTATE value from the driver. For
example, SQLSTATE HY001 (Memory allocation error) indicates that the Driver Manager's call to the
driver-level SQLAllocHandle returned SQL_ERROR. The error is returned on a connection handle.

For more information about the flow of function calls between the Driver Manager and a driver, see the
SQLConnect Function.

Errors

The following table lists the SQLSTATE values typically returned by SQLAllocHandle and explains each
one in the context of this function; the notation "(DM)" precedes the descriptions of SQLSTATEs returned
by the Driver Manager. The return code associated with each SQLSTATE value is SQL_ERROR, unless
noted otherwise.

SQLSTATE

 Error Description

01000 General warning Driver-specific informational message. (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection does not exist (DM) The HandleType argument was
SQL_HANDLE_STMT or SQL_HANDLE_DESC, but the
connection specified by the InputHandle argument was
not open. The connection process must be completed
successfully (and the connection must be open) for the
driver to allocate a statement or descriptor handle.

HY000 General error An error occurred for which there was no specific
SQLSTATE and for which no implementation-specific
SQLSTATE was defined. The error message returned
by SQLGetDiagRec in the *MessageText buffer
describes the error and its cause.

Oterro 11 Help Manual40

Copyright © 1982-2024 R:BASE Technologies, Inc.

HY001 Memory allocation error (DM) The Driver Manager was unable to allocate
memory for the specified handle. The driver was
unable to allocate memory for the specified handle.

HY009 Invalid use of null pointer (DM) The OutputHandlePtr argument was a null pointer.

HY010 Function sequence error (DM) The HandleType argument was
SQL_HANDLE_DBC, and SQLSetEnvAttr has not been
called to set the SQL_ODBC_VERSION environment
attribute.

HY013 Memory management error The HandleType argument was SQL_HANDLE_DBC,
SQL_HANDLE_STMT, or SQL_HANDLE_DESC; and the
function call could not be processed because the
underlying memory objects could not be accessed,
possibly because of low memory conditions.

HY014 Limit on the number of handles
exceeded

The driver-defined limit for the number of handles that
can be allocated for the type of handle indicated by the
HandleType argument has been reached.

HY092 Invalid attribute/option identifier (DM) The HandleType argument was not:
SQL_HANDLE_ENV, SQL_HANDLE_DBC,
SQL_HANDLE_STMT, or SQL_HANDLE_DESC.

HYC00 Optional feature not implemented The HandleType argument was SQL_HANDLE_DESC
and the driver was an ODBC 2.x driver.

HYT01 Connection timeout expired The connection timeout period expired before the data
source responded to the request. The connection
timeout period is set through SQLSetConnectAttr,
SQL_ATTR_CONNECTION_TIMEOUT.

IM001 Driver does not support this function (DM) The HandleType argument was
SQL_HANDLE_STMT, and the driver was not a valid
ODBC driver.(DM) The HandleType argument was
SQL_HANDLE_DESC, and the driver does not support
allocating a descriptor handle.

Comments

SQLAllocHandle is used to allocate handles for environments, connections, statements, and descriptors,
as described in the following sections. For general information about handles, see Handles.

More than one environment, connection, or statement handle can be allocated by an application at a time
if multiple allocations are supported by the driver. In ODBC, no limit is defined on the number of
environment, connection, statement, or descriptor handles that can be allocated at any one time. Drivers
may impose a limit on the number of a certain type of handle that can be allocated at a time; for more
information, see the driver documentation.

If the application calls SQLAllocHandle with *OutputHandlePtr set to an environment, connection,
statement, or descriptor handle that already exists, the driver overwrites the information associated with
the handle, unless the application is using connection pooling (see "Allocating an Environment Attribute
for Connection Pooling" later in this section). The Driver Manager does not check to see whether the
handle entered in *OutputHandlePtr is already being used, nor does it check the previous contents of a
handle before overwriting them.

Note: It is incorrect ODBC application programming to call SQLAllocHandle two times with the same
application variable defined for *OutputHandlePtr without calling SQLFreeHandle to free the handle
before reallocating it. Overwriting ODBC handles in such a manner could lead to inconsistent behavior
or errors on the part of ODBC drivers.

On operating systems that support multiple threads, applications can use the same environment,
connection, statement, or descriptor handle on different threads. Drivers must therefore support safe,
multithread access to this information; one way to achieve this, for example, is by using a critical section
or a semaphore. For more information about threading, see Multithreading.

Allocating an Environment Handle

An environment handle provides access to global information such as valid connection handles and active
connection handles. For general information about environment handles, see Environment Handles.

Oterro Engine Functions 41

Copyright © 1982-2024 R:BASE Technologies, Inc.

To request an environment handle, an application calls SQLAllocHandle with a HandleType of
SQL_HANDLE_ENV and an InputHandle of SQL_NULL_HANDLE. The driver allocates memory for the
environment information and passes the value of the associated handle back in the *OutputHandlePtr
argument. The application passes the *OutputHandle value in all subsequent calls that require an
environment handle argument.

Under a Driver Manager's environment handle, if there already exists a driver's environment handle,
then SQLAllocHandle with a HandleType of SQL_HANDLE_ENV is not called in that driver when a
connection is made, only SQLAllocHandle with a HandleType of SQL_HANDLE_DBC. If a driver's
environment handle does not exist under the Driver Manager's environment handle, both SQLAllocHandle
with a HandleType of SQL_HANDLE_ENV and SQLAllocHandle with a HandleType of SQL_HANDLE_DBC
are called in the driver when the first connection handle of the environment is connected to the driver.

When the Driver Manager processes the SQLAllocHandle function with a HandleType of
SQL_HANDLE_ENV, it checks the Trace keyword in the [ODBC] section of the system information. If it is
set to 1, the Driver Manager enables tracing for the current application on a computer that is running
Microsoft® Windows® 95/98, Microsoft Windows NT® Server/Windows 2000 Server, or Microsoft
Windows NT Workstation/Windows 2000 Professional. If the trace flag is set, tracing starts when the first
environment handle is allocated and ends when the last environment handle is freed.

After allocating an environment handle, an application must call SQLSetEnvAttr on the environment
handle to set the SQL_ATTR_ODBC_VERSION environment attribute. If this attribute is not set before
SQLAllocHandle is called to allocate a connection handle on the environment, the call to allocate the
connection will return SQLSTATE HY010 (Function sequence error).

Allocating Shared Environments for Connection Pooling

Environments can be shared among multiple components on a single process. A shared environment can
be used by more than one component at the same time. When a component uses a shared environment,
it can use pooled connections, which allow it to allocate and use an existing connection without re-
creating that connection.

Before allocating a shared environment that can be used for connection pooling, an application must call
SQLSetEnvAttr to set the SQL_ATTR_CONNECTION_POOLING environment attribute to
SQL_CP_ONE_PER_DRIVER or SQL_CP_ONE_PER_HENV. SQLSetEnvAttr in this case is called with
EnvironmentHandle set to null, which makes the attribute a process-level attribute.

After connection pooling has been enabled, an application calls SQLAllocHandle with the HandleType
argument set to SQL_HANDLE_ENV. The environment allocated by this call will be an implicit shared
environment because connection pooling has been enabled. (For more information about connection
pooling, see SQLConnect Function.)

When a shared environment is allocated, the environment that will be used is not determined until
SQLAllocHandle with a HandleType of SQL_HANDLE_DBC is called. At that point, the Driver Manager tries
to find an existing environment that matches the environment attributes requested by the application. If
no such environment exists, one is created as a shared environment. The Driver Manager maintains a
reference count for each shared environment; the count is set to 1 when the environment is first created.
If a matching environment is found, the handle of that environment is returned to the application and the
reference count is incremented. An environment handle allocated in this manner can be used in any
ODBC function that accepts an environment handle as an input argument.

Allocating a Connection Handle

A connection handle provides access to information such as the valid statement and descriptor handles
on the connection and whether a transaction is currently open. For general information about connection
handles, see Connection Handles.

To request a connection handle, an application calls SQLAllocHandle with a HandleType of
SQL_HANDLE_DBC. The InputHandle argument is set to the environment handle that was returned by the
call to SQLAllocHandle that allocated that handle. The driver allocates memory for the connection
information and passes the value of the associated handle back in *OutputHandlePtr. The application
passes the *OutputHandlePtr value in all subsequent calls that require a connection handle.

Oterro 11 Help Manual42

Copyright © 1982-2024 R:BASE Technologies, Inc.

The Driver Manager processes the SQLAllocHandle function and calls the driver's SQLAllocHandle function
when the application calls SQLConnect, SQLBrowseConnect, or SQLDriverConnect. (For more
information, see SQLConnect Function.)

If the SQL_ATTR_ODBC_VERSION environment attribute is not set before SQLAllocHandle is called to
allocate a connection handle on the environment, the call to allocate the connection will return SQLSTATE
HY010 (Function sequence error).

When an application calls SQLAllocHandle with the InputHandle argument set to SQL_HANDLE_DBC and
also set to a shared environment handle, the Driver Manager tries to find an existing shared environment
that matches the environment attributes set by the application. If no such environment exists, one is
created, with a reference count (maintained by the Driver Manager) of 1. If a matching shared
environment is found, that handle is returned to the application and its reference count is incremented.

The actual connection that will be used is not determined by the Driver Manager until SQLConnect or
SQLDriverConnect is called. The Driver Manager uses the connection options in the call to SQLConnect
(or the connection keywords in the call to SQLDriverConnect) and the connection attributes set after
connection allocation to determine which connection in the pool should be used. For more information,
see SQLConnect Function.

Allocating a Statement Handle

A statement handle provides access to statement information, such as error messages, the cursor name,
and status information for SQL statement processing. For general information about statement handles,
see Statement Handles.

To request a statement handle, an application connects to a data source and then calls SQLAllocHandle
before it submits SQL statements. In this call, HandleType should be set to SQL_HANDLE_STMT and
InputHandle should be set to the connection handle that was returned by the call to SQLAllocHandle that
allocated that handle. The driver allocates memory for the statement information, associates the
statement handle with the specified connection, and passes the value of the associated handle back in
*OutputHandlePtr. The application passes the *OutputHandlePtr value in all subsequent calls that require
a statement handle.

When the statement handle is allocated, the driver automatically allocates a set of four descriptors and
assigns the handles for these descriptors to the SQL_ATTR_APP_ROW_DESC,
SQL_ATTR_APP_PARAM_DESC, SQL_ATTR_IMP_ROW_DESC, and SQL_ATTR_IMP_PARAM_DESC
statement attributes. These are referred to as implicitly allocated descriptors. To allocate an application
descriptor explicitly, see the following section, "Allocating a Descriptor Handle."

Allocating a Descriptor Handle

When an application calls SQLAllocHandle with a HandleType of SQL_HANDLE_DESC, the driver allocates
an application descriptor. These are referred to as explicitly allocated descriptors. The application directs
a driver to use an explicitly allocated application descriptor instead of an automatically allocated one for
a given statement handle by calling the SQLSetStmtAttr function with the SQL_ATTR_APP_ROW_DESC or
SQL_ATTR_APP_PARAM_DESC attribute. An implementation descriptor cannot be allocated explicitly, nor
can an implementation descriptor be specified in an SQLSetStmtAttr function call.

Explicitly allocated descriptors are associated with a connection handle instead of a statement handle (as
automatically allocated descriptors are). Descriptors remain allocated only when an application is actually
connected to the database. Because explicitly allocated descriptors are associated with a connection
handle, an application can associate an explicitly allocated descriptor with more than one statement
within a connection. An implicitly allocated application descriptor, on the other hand, cannot be associated
with more than one statement handle. (It cannot be associated with any statement handle other than the
one that it was allocated for.) Explicitly allocated descriptor handles can be freed explicitly either by the
application or by calling SQLFreeHandle with a HandleType of SQL_HANDLE_DESC, or implicitly when the
connection is closed.

When the explicitly allocated descriptor is freed, the implicitly allocated descriptor is again associated
with the statement. (The SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC attribute for that

Oterro Engine Functions 43

Copyright © 1982-2024 R:BASE Technologies, Inc.

statement is again set to the implicitly allocated descriptor handle.) This is true for all statements that
were associated with the explicitly allocated descriptor on the connection.

For more information about descriptors, see Descriptors.

Related Functions

Function Description

SQLExecDirect Executing an SQL statement

SQLExecute Executing a prepared SQL statement

SQLFreeHandle Freeing an environment, connection, statement, or descriptor handle

SQLPrepare Preparing a statement for execution

SQLSetConnectAttr Setting a connection attribute

SQLSetEnvAttr Setting an environment attribute

SQLSetStmtAttr Setting a statement attribute

Code Example

// SQLBrowseConnect_Function.cpp
// compile with: odbc32.lib
#include <windows.h>
#include <sqltypes.h>
#include <sqlext.h>

#define BRWS_LEN 100
SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;
SQLRETURN retcode;
SQLCHAR szConnStrIn[BRWS_LEN], szConnStrOut[BRWS_LEN];
SQLSMALLINT cbConnStrOut;

void GetUserInput(SQLCHAR * szConnStrOut, SQLCHAR * szConnStrIn) {}

int main() {
 // Allocate the environment handle.
 retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {

 // Set the version environment attribute.
 retcode = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER*)
SQL_OV_ODBC3, 0);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {

 // Allocate the connection handle.
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 // Call SQLBrowseConnect until it returns a value other than
SQL_NEED_DATA
 // (pass data source name the first time). If SQL_NEED_DATA is
returned, call GetUserInput
 // (not shown) to build a dialog from the values in
szConnStrOut. The user-supplied values
 // are returned in szConnStrIn, which is passed in the next
call to SQLBrowseConnect.

Oterro 11 Help Manual44

Copyright © 1982-2024 R:BASE Technologies, Inc.

 strcpy_s((char*)szConnStrIn, _countof(szConnStrIn),
"DSN=Sales");
 do {
 retcode = SQLBrowseConnect(hdbc, szConnStrIn, SQL_NTS,
 szConnStrOut, BRWS_LEN, &cbConnStrOut);
 if (retcode == SQL_NEED_DATA)
 GetUserInput(szConnStrOut, szConnStrIn);
 } while (retcode == SQL_NEED_DATA);

 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
{

 // Allocate the statement handle.
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 if (retcode == SQL_SUCCESS || retcode ==
SQL_SUCCESS_WITH_INFO)
 // Process data after successful connection
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 SQLDisconnect(hdbc);
 }
 }
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 }
 }
 SQLFreeHandle(SQL_HANDLE_ENV, henv);
}

4.4 SQLAllocStmt

SQLAllocStmt allocates a new statement handle and associates it with the connection handle specified by
hdbc.

Syntax

RETCODE = SQLAllocStmt (hdbc, hstmt)

Arguments

Type Argument Use Description

Long hdbc Input The database connection handle.

Long hstmt Output A pointer to storage for the statement handle.

Return Values

SQL_SUCCESS, SQL_INVALID_HANDLE, or SQL_ERROR

Comments

The hstmt is the pointer to a statement handle, which is an input parameter for all functions that process
SQL commands. All information relating to descriptors, result values, and status information is associated
with the statement handle by the Oterro Engine.

Oterro Engine Functions 45

Copyright © 1982-2024 R:BASE Technologies, Inc.

A valid connection handle must be established before allocating a statement handle. See
SQLAllocConnect.

If SQL_ERROR is returned, the hstmt argument is set to zero. SQLError can be called with this hstmt (or
SQL_NULL_HSTMT) and the hdbc passed to SQLAllocStmt for more information.

Caution: If you specify a pointer to a statement handle that has already been allocated, SQLAllocStmt
overwrites the pointer regardless of its contents.

Related Functions

Function Description

SQLExecDirect Executes an SQL statement.

SQLExecute Executes a prepared SQL statement.

SQLFreeStmt Frees a statement handle.

SQLPrepare Prepares an SQL statement for execution.

Errors

SQLSTATE Description

08003 No database has been connected.

S1000 An error has occurred that has no defined SQLSTATE—see
the error message text.

S1001 A memory allocation failure.

S1009 An invalid argument value—a null pointer was passed.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLAllocStmt Lib "ODBC32.DLL" (ByVal hdbc&, phstmt&) As Integer

CODE:
Global szConnectOut As String * 512
Global cbConnectOut As Integer
Global dbstr As String
Global dbdir As String

Private Sub fdrvconn_Click()
 Dim i As Integer
 retcode = SQLAllocEnv(henv&)
 retcode = SQLAllocConnect(henv&, hdbc&)
 errorcheck retcode
 retcode = SQLDriverConnect(hdbc&, hwnd&, dbstr, SQL_NTS, szConnectOut,
255, cbConnectOut, SQL_DRIVER_COMPLETE)
 If retcode <> 0 Then
 errorcheck retcode
 GoTo lend
 End If
 'get the database path
 retcode = SQLGetInfo(hdbc&, SQL_DATABASE_NAME, szConnectOut, 512,
cbConnectOut)
 errorcheck retcode
 dbstr = Chop(szConnectOut)

Oterro 11 Help Manual46

Copyright © 1982-2024 R:BASE Technologies, Inc.

 i = InStr(dbstr, "\")
 dbdir = Left$(dbstr, i)
 Do While i <> 0
 i = InStr(i + 1, dbstr, "\")
 If i <> 0 Then
 dbdir = Left$(dbstr, i)
 End If
 Loop
 retcode = SQLAllocStmt(hdbc&, hstmt&)
 errorcheck retcode
lend:
End Sub

4.5 SQLBindCol

Note: This function cannot be called from Visual Basic because it uses a pointer to a data structure as an
input argument but does not use that pointer immediately. Since Visual Basic moves data around, the
pointers would become invalid. Use SQLGetData instead. The SQLBindCol function is included here with
the syntax for using the C or C++ programming language.

SQLBindCol defines storage and conversions for a column in a result set.

Syntax

RETCODE PASCAL SQLBindCol (hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)

Arguments

Type Argument Use Description

HSTMT hstmt Input The statement handle.

UWORD icol Input The column number in the result data, starting at 1.

SWORD fCType Input The C data type the value in the buffer is converted to.

PTR rgbValue Input A pointer to storage for the data.

SDWORD cbValueMax Input The maximum length of the rgbValue buffer.

SDWORD FAR* pcbValue Output The number of bytes placed in the rgbValue buffer.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

The columns in the result set are numbered sequentially, starting at one. The number of columns in a
result set is determined by calling SQLNumResultCols after executing the SQL statement that generates
the result set. (The result set is generated by SQLExecDirect or SQLExecute.) SQLBindCol should (in
general) be called before SQLFetch; however, you can call SQLBindCol after fetching one or more rows.

The argument fCType can be set to SQL_C_DEFAULT or any other legal C data type for the data-type
conversion. When SQL_C_DEFAULT is specified, the data is placed in the rgbValue buffer using the
appropriate C data type. When SQL_C_CHAR is specified for a non-character column type, data converts
to a character string. For more information about conversion of data types, see "Data Types and
Retrieval for C" in the Appendix.

The argument rgbValue is a pointer to storage of the converted data. The user's application is
responsible for allocating enough storage for the converted data as specified by fCType. For variable

Oterro Engine Functions 47

Copyright © 1982-2024 R:BASE Technologies, Inc.

length data, the application must allocate the maximum length of a column to ensure that all data is
retrieved. When the application does not allocate the maximum length, the data could be truncated.

When this function is called, cbValueMax indicates the maximum number of bytes to be stored in
rgbValue. After each SQLFetch, pcbValue indicates the actual number of bytes transferred to rgbValue, or
SQL_NULL_DATA (-1) when data value is NULL. When the returned pcbValue is greater than or equal to
cbValue and SQL_SUCCESS_WITH_INFO is the return code, the data is truncated. To retrieve all the
desired data, you must enlarge your output buffer and re-execute the select statement, or use
SQLGetData.

4.6 SQLBindParameter

Note: This function cannot be called from Visual Basic because it uses a pointer to a data structure as an
input argument but does not use that pointer immediately. Since Visual Basic moves data around, the
pointers would become invalid. It is included here with the syntax for using the C and C++ programming
language.

SQLBindParameter defines storage for a parameter marker in an SQL statement.

Syntax

RETCODE PASCAL SQLBindParameter (hStmt, ipar, fParamType, fCType, fSqlType, cbColDef,

ibScale, rgbValue, cbValueMax, pcbValue)

Arguments

Type Argument Use Description

HSTMT hStmt Input Statement handle.

UWORD ipar Input The parameter to set, starting at 1.

SWORD fParamType Input The type of the parameter: SQL_PARAM_INPUT
SQL_PARAM_OUTPUT SQL_PARAM_INPUT_OUTPUT

SWORD fCType Input Convert to this C data type in the value buffer. See
Appendix.

SWORD fSqlType Input The ODBC SQL data type.

UDWORD cbColDef Input The length/precision of the column.

SWORD ibScale Input The scale of the column.

PTR rgbValue Input/ Output A pointer to storage for the data.

SDWORD cbValueMax Input Maximum length of the rgbValue buffer.

SDWORD FAR* pcbValue Input/ Output The number of bytes placed in the rbgValue buffer.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Comments

Bindings from SQLBindParameter remain in effect until the application calls SQLBindParameter again or
until the application call SQLFreeStmt with the SQL_DROP or SQL_RESET_PARAMS option.

If pcbValue is a null pointer, the driver presumes that all input parameter values are not NULL and that
character and binary data are null-terminated. If fParamType is SQL_PARAM_OUTPUT and rgbValue and
pcbValue are both null pointers, the driver discards the output value.

Oterro 11 Help Manual48

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.7 SQLBrowseConnect

QLBrowseConnect is called repeatedly to find and enumerate the attributes and values needed to connect
to a data source.

Syntax

RETCODE = SQLBrowseConnect (hdbc, szConnStrIn, cbConnStrIn, szConnStrOut,

cbConnStrOutMax, pcbConnStrOut)

Arguments

Type Argument Use Description

Long hdbc Input The database connection handle.

String szConnStrIn Input The connection string.

Integer cbConnStrIn Input The length of the connection string.

String szConnStrOut Output A pointer to the filled connection string.

Integer cbConnStrOutMax Input The maximum length of the output connection string.

Integer pcbConnStrOut Output The length of the returned connection string.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_ERROR, or
SQL_INVALID_HANDLE.

Comments

When SQLBrowseConnect is called for the first time on a connection handle (hdbc), the connection string
must contain the DSN keyword or the Driver keyword.

On each call to SQLBrowseConnect, the application itemizes the connection attribute values in the
connection string. The driver returns successive levels of attributes and attribute values in the filled
connection string; it returns SQL_NEED_DATA as long as there are connection attributes that have not
yet been specified in the connection string.

When all levels of connection and their related attributes have been specified, the driver returns
SQL_SUCCESS, the connection to the data source is complete, and a complete connection string is
returned to the application. The connection string is suitable to use along with SQLDriverConnect with the
SQL_DRIVER_NO_PROMPT option to establish another connection.

Related Functions

Function Description

SQLAllocConnect Allocates a connection handle.

SQLConnect Opens a connection to a database.

SQLDataSources Returns the data source names.

SQLDisconnect Closes the connection to a database.

SQLDriverConnect Prompts for information to open a connection to a database.

SQLDrivers Returns driver descriptions and attributes.

SQLFreeConnect Frees the connection handle.

Errors

SQLSTATE Description

01000 Driver-specific informational message. (The function returns
SQL_SUCCESS_WITH_INFO.)

Oterro Engine Functions 49

Copyright © 1982-2024 R:BASE Technologies, Inc.

01004 The data was truncated.

01S00 An invalid connection attribute was specified. (SQL_SUCCESS_WITH_INFO
was returned.)

08001 Unable to connect to data source.

08002 The connection is already in use.

08004 The data source rejected the connection.

08S01 The data source connection failed before the function completed processing.

28000 No access is available for this user.

IM001 The driver associated with the hstmt does not support the function.

IM002 The data source was not found and a default driver was not specified.

IM003 The specified driver could not be loaded.

IM004 The driver's SQLAllocEnv failed.

IM005 The driver's SQLAllocConnect failed.

IM006 The driver's SQLSetConnectOption failed.

IM009 The driver was unable to load the specified translation DLL.

IM010 The data source name was too long.

IM011 The driver name was too long.

IM012 DRIVER keyword syntax error.

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

S1T00 The timeout period expired before the connection was completed.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLBrowseConnect Lib "ODBC32.DLL" (ByVal hdbc&, ByVal szConnStrIn$, ByVal
cbConnStrIn%, ByVal szConnStrOut$, ByVal cbConnStrOutMax%, pcbConnStrOut%) As Integer

CODE:
Global msg As String
Global szConnectOut As String * 512
Global cbConnectOut As Integer
Global dbstr As String

Private Sub mc2brocon_Click()
 retcode = SQLAllocEnv(hEnv&)
 retcode = SQLAllocConnect(hEnv&, hdbc&)
 xconn = 1
 errorcheck retcode
 dbstr = "DSN=C:\RBTI\OTERRO11\vbtypes;" & vbNullChar
 msg = "initial values"
 dbstr = InputBox(msg, "SQLBrowseConnect", Chop(dbstr)) & vbNullChar
 retcode = SQLBrowseConnect(hdbc&, dbstr, SQL_NTS, szConnectOut, 512,
cbConnectOut)
 If retcode = SQL_NEED_DATA Then
 Do While SQLBrowseConnect(hdbc&, dbstr, SQL_NTS, szConnectOut,
512, cbConnectOut) = SQL_NEED_DATA
 msg = szConnectOut
 dbstr = InputBox(msg, "SQLBrowseConnect", Chop(dbstr)) &
vbNullChar
 Loop
 End If
 retcode = SQLAllocStmt(hdbc&, hStmt&)

Oterro 11 Help Manual50

Copyright © 1982-2024 R:BASE Technologies, Inc.

 xconn = 0
 errorcheck retcode
End Sub

4.8 SQLBulkOperations

SQLBulkOperations performs bulk insertions and bulk bookmark operations, including update, delete, and
fetch by bookmark.

Syntax

RETCODE = SQLBulkOperations(StatementHandle,Operation)

Arguments

Type Argument Use Description

Long StatementHandle Input Statement handle.

Integer Operation Input Operation to perform:
SQL_ADD
SQL_UPDATE_BY_BOOKMARK
SQL_DELETE_BY_BOOKMARK
SQL_FETCH_BY_BOOKMARK

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Errors

SQLSTA
TE

Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 String data right truncation The Operation argument was SQL_FETCH_BY_BOOKMARK, and
string or binary data returned for a column or columns with a
data type of SQL_C_CHAR or SQL_C_BINARY resulted in the
truncation of nonblank character or non-NULL binary data.

01S01 Error in row The Operation argument was SQL_ADD, and an error occurred
in one or more rows while performing the operation but at least
one row was successfully added. (Function returns
SQL_SUCCESS_WITH_INFO.)

(This error is raised only when an application is working with an
ODBC 2.x driver.)

01S07 Fractional truncation The Operation argument was SQL_FETCH_BY_BOOKMARK, the
data type of the application buffer was not SQL_C_CHAR or
SQL_C_BINARY, and the data returned to application buffers
for one or more columns was truncated. (For numeric C data
types, the fractional part of the number was truncated. For
time, timestamp, and interval C data types that contain a time
component, the fractional portion of the time was truncated.)

(Function returns SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type attribute
violation

The Operation argument was SQL_FETCH_BY_BOOKMARK, and
the data value of a column in the result set could not be
converted to the data type specified by the TargetType
argument in the call to SQLBindCol.

Oterro Engine Functions 51

Copyright © 1982-2024 R:BASE Technologies, Inc.

The Operation argument was SQL_UPDATE_BY_BOOKMARK or
SQL_ADD, and the data value in the application buffers could
not be converted to the data type of a column in the result set.

07009 Invalid descriptor index The argument Operation was SQL_ADD, and a column was
bound with a column number greater than the number of
columns in the result set.

21S02 Degree of derived table does
not match column list

The argument Operation was SQL_UPDATE_BY_BOOKMARK;
and no columns were updatable because all columns were
either unbound or read-only, or the value in the bound
length/indicator buffer was SQL_COLUMN_IGNORE.

22001 String data right truncation The assignment of a character or binary value to a column in
the result set resulted in the truncation of nonblank (for
characters) or non-null (for binary) characters or bytes.

22003 Numeric value out of range The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the assignment of a
numeric value to a column in the result set caused the whole
(as opposed to fractional) part of the number to be truncated.

The argument Operation was SQL_FETCH_BY_BOOKMARK, and
returning the numeric value for one or more bound columns
would have caused a loss of significant digits.

22007 Invalid datetime format The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the assignment of a date or
timestamp value to a column in the result set caused the year,
month, or day field to be out of range.

The argument Operation was SQL_FETCH_BY_BOOKMARK, and
returning the date or timestamp value for one or more bound
columns would have caused the year, month, or day field to be
out of range.

22008 Date/time field overflow The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the performance of
datetime arithmetic on data being sent to a column in the result
set resulted in a datetime field (the year, month, day, hour,
minute, or second field) of the result falling outside the
permissible range of values for the field or being invalid based
on the Gregorian calendar's natural rules for datetimes.

The Operation argument was SQL_FETCH_BY_BOOKMARK, and
the performance of datetime arithmetic on data being retrieved
from the result set resulted in a datetime field (the year,
month, day, hour, minute, or second field) of the result falling
outside the permissible range of values for the field or being
invalid based on the Gregorian calendar's natural rules for
datetimes.

22015 Interval field overflow The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the assignment of an exact
numeric or interval C type to an interval SQL data type caused
a loss of significant digits.

The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK; when assigning to an interval
SQL type, there was no representation of the value of the C
type in the interval SQL type.

The Operation argument was SQL_FETCH_BY_BOOKMARK, and
assigning from an exact numeric or interval SQL type to an
interval C type caused a loss of significant digits in the leading
field.

The Operation argument was SQL_FETCH_BY_BOOKMARK;
when assigning to an interval C type, there was no

Oterro 11 Help Manual52

Copyright © 1982-2024 R:BASE Technologies, Inc.

representation of the value of the SQL type in the interval C
type.

22018 Invalid character value for cast
specification

The Operation argument was SQL_FETCH_BY_BOOKMARK; the
C type was an exact or approximate numeric, a datetime, or an
interval data type; the SQL type of the column was a character
data type; and the value in the column was not a valid literal of
the bound C type.

The argument Operation was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK; the SQL type was an exact or
approximate numeric, a datetime, or an interval data type; the
C type was SQL_C_CHAR; and the value in the column was not
a valid literal of the bound SQL type.

23000 Integrity constraint violation The Operation argument was SQL_ADD,
SQL_DELETE_BY_BOOKMARK, or
SQL_UPDATE_BY_BOOKMARK, and an integrity constraint was
violated. The Operation argument was SQL_ADD, and a column
that was not bound is defined as NOT NULL and has no default.

The Operation argument was SQL_ADD, the length specified in
the bound StrLen_or_IndPtr buffer was SQL_COLUMN_IGNORE,
and the column did not have a default value.

24000 Invalid cursor state The StatementHandle was in an executed state, but no result
set was associated with the StatementHandle.

40001 Serialization failure The transaction was rolled back because of a resource deadlock
with another transaction.

40003 Statement completion
unknown

The associated connection failed during the execution of this
function, and the state of the transaction cannot be determined.

42000 Syntax error or access
violation

The driver was unable to lock the row as needed to perform the
operation requested in the Operation argument.

44000 WITH CHECK OPTION violation The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the insert or update was
performed on a viewed table (or a table derived from the
viewed table) that was created by specifying WITH CHECK
OPTION, in such a way that one or more rows affected by the
insert or update will no longer be present in the viewed table.

HY000 General error An error occurred for which there was no specific SQLSTATE
and for which no implementation-specific SQLSTATE was
defined. The error message returned by SQLGetDiagRec in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation error The driver was unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled Asynchronous processing was enabled for the
StatementHandle. The function was called, and before it
completed execution, SQLCancel was called on the
StatementHandle.

Then the function was called again on the StatementHandle.
The function was called, and before it completed execution,
SQLCancel was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error (DM) The specified StatementHandle was not in an executed
state. The function was called without first calling
SQLExecDirect, SQLExecute, or a catalog function.

(DM) An asynchronously executing function (not this one) was
called for the StatementHandle and was still executing when
this function was called.

(DM) SQLExecute, SQLExecDirect, or SQLSetPos was called for
the StatementHandle and returned SQL_NEED_DATA. This
function was called before data was sent for all data-at-
execution parameters or columns.

Oterro Engine Functions 53

Copyright © 1982-2024 R:BASE Technologies, Inc.

(DM) The driver was an ODBC 2.x driver, and
SQLBulkOperations was called for a StatementHandle before
SQLFetchScroll or SQLFetch was called.

(DM) SQLBulkOperations was called after SQLExtendedFetch
was called on the StatementHandle.

HY011 Attribute cannot be set now (DM) The driver was an ODBC 2.x driver, and the
SQL_ATTR_ROW_STATUS_PTR statement attribute was set
between calls to SQLFetch or SQLFetchScroll and
SQLBulkOperations.

HY013 Memory management error The function call could not be processed because the underlying
memory objects could not be accessed, possibly because of low
memory conditions.

HY090 Invalid string or buffer length The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK; a data value was not a null
pointer; the C data type was SQL_C_BINARY or SQL_C_CHAR;
and the column length value was less than 0, but not equal to
SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE, SQL_NTS, or
SQL_NULL_DATA, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

The value in a length/indicator buffer was
SQL_DATA_AT_EXEC; the SQL type was either
SQL_LONGVARCHAR, SQL_LONGVARBINARY, or a long data
source–specific data type; and the
SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo
was "Y".

The Operation argument was SQL_ADD, the
SQL_ATTR_USE_BOOKMARK statement attribute was set to
SQL_UB_VARIABLE, and column 0 was bound to a buffer whose
length was not equal to the maximum length for the bookmark
for this result set. (This length is available in the
SQL_DESC_OCTET_LENGTH field of the IRD and can be
obtained by calling SQLDescribeCol, SQLColAttribute, or
SQLGetDescField.)

HY092 Invalid attribute identifier (DM) The value specified for the Operation argument was
invalid.

The Operation argument was SQL_ADD,
SQL_UPDATE_BY_BOOKMARK, or
SQL_DELETE_BY_BOOKMARK, and the
SQL_ATTR_CONCURRENCY statement attribute was set to
SQL_CONCUR_READ_ONLY.

The Operation argument was SQL_DELETE_BY_BOOKMARK,
SQL_FETCH_BY_BOOKMARK, or SQL_UPDATE_BY_BOOKMARK,
and the bookmark column was not bound or the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_OFF.

HYC00 Optional feature not
implemented

The driver or data source does not support the operation
requested in the Operation argument.

HYT00 Timeout expired The query timeout period expired before the data source
returned the result set. The timeout period is set through
SQLSetStmtAttr with an Attribute argument of
SQL_ATTR_QUERY_TIMEOUT.

Comments

An application uses SQLBulkOperations to perform the following operations on the base table or view that
corresponds to the current query:

· Add new rows.
· Update a set of rows where each row is identified by a bookmark.

Oterro 11 Help Manual54

Copyright © 1982-2024 R:BASE Technologies, Inc.

· Delete a set of rows where each row is identified by a bookmark.
· Fetch a set of rows where each row is identified by a bookmark.

After a call to SQLBulkOperations, the block cursor position is undefined. The application has to call
SQLFetchScroll to set the cursor position. An application should call SQLFetchScroll only with a
FetchOrientation argument of SQL_FETCH_FIRST, SQL_FETCH_LAST, SQL_FETCH_ABSOLUTE, or
SQL_FETCH_BOOKMARK. The cursor position is undefined if the application calls SQLFetch or
SQLFetchScroll with a FetchOrientation argument of SQL_FETCH_PRIOR, SQL_FETCH_NEXT, or
SQL_FETCH_RELATIVE.

A column can be ignored in bulk operations performed by a call to SQLBulkOperations by setting the
column length/indicator buffer specified in the call to SQLBindCol, to SQL_COLUMN_IGNORE.

It is not necessary for the application to set the SQL_ATTR_ROW_OPERATION_PTR statement attribute
when it calls SQLBulkOperations because rows cannot be ignored when performing bulk operations with
this function.

The buffer pointed to by the SQL_ATTR_ROWS_FETCHED_PTR statement attribute contains the number of
rows affected by a call to SQLBulkOperations.

When the Operation argument is SQL_ADD or SQL_UPDATE_BY_BOOKMARK and the select-list of the
query specification associated with the cursor contains more than one reference to the same column, it is
driver-defined whether an error is generated or the driver ignores the duplicated references and
performs the requested operations.

Related Functions

Function Description

SQLBindCol Binding a buffer to a column in a result set

SQLCancel Canceling statement processing

SQLFetchScroll Fetching a block of data or scrolling through a result set

SQLSetPos Positioning the cursor, refreshing data in the rowset, or updating or deleting data in
the rowset

SQLSetStmtAttr Setting a statement attribute

Code Example

The following example fetches 10 rows of data at a time from the Customers table. It then prompts the
user for an action to take. To reduce network traffic, the example buffer updates, deletes, and inserts
locally in the bound arrays, but at offsets past the rowset data. When the user chooses to send updates,
deletes, and inserts to the data source, the code sets the binding offset appropriately and calls
SQLBulkOperations. For simplicity, the user cannot buffer more than 10 updates, deletes, or inserts.

// SQLBulkOperations_Function.cpp
// compile with: ODBC32.lib
#include <windows.h>
#include <sqlext.h>
#include "stdio.h"

#define UPDATE_ROW 100
#define DELETE_ROW 101
#define ADD_ROW 102
#define SEND_TO_DATA_SOURCE 103
#define UPDATE_OFFSET 10
#define INSERT_OFFSET 20
#define DELETE_OFFSET 30

// Define structure for customer data (assume 10 byte maximum bookmark
size).

Oterro Engine Functions 55

Copyright © 1982-2024 R:BASE Technologies, Inc.

typedef struct tagCustStruct {
 SQLCHAR Bookmark[10];
 SQLINTEGER BookmarkLen;
 SQLUINTEGER CustomerID;
 SQLINTEGER CustIDInd;
 SQLCHAR CompanyName[51];
 SQLINTEGER NameLenOrInd;
 SQLCHAR Address[51];
 SQLINTEGER AddressLenOrInd;
 SQLCHAR Phone[11];
 SQLINTEGER PhoneLenOrInd;
} CustStruct;

// Allocate 40 of these structures. Elements 0-9 are for the current
rowset,
// elements 10-19 are for the buffered updates, elements 20-29 are for
// the buffered inserts, and elements 30-39 are for the buffered deletes.
CustStruct CustArray[40];
SQLUSMALLINT RowStatusArray[10], Action, RowNum, NumUpdates = 0, NumInserts
= 0,
NumDeletes = 0;
SQLINTEGER BindOffset = 0;
SQLRETURN retcode;
SQLHENV henv = NULL;
SQLHDBC hdbc = NULL;
SQLPOINTER rgbValue;
SQLHSTMT hstmt = NULL;

int main() {
 retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 retcode = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER*)
SQL_OV_ODBC3, 0);

 retcode = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 retcode = SQLSetConnectAttr(hdbc, SQL_LOGIN_TIMEOUT, (SQLPOINTER)
(rgbValue), 0);

 retcode = SQLConnect(hdbc, (SQLCHAR*) "Northwind", SQL_NTS, (SQLCHAR*)
NULL, 0, NULL, 0);
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 // Set the following statement attributes:
 // SQL_ATTR_CURSOR_TYPE: Keyset-driven
 // SQL_ATTR_ROW_BIND_TYPE: Row-wise
 // SQL_ATTR_ROW_ARRAY_SIZE: 10
 // SQL_ATTR_USE_BOOKMARKS: Use variable-length bookmarks
 // SQL_ATTR_ROW_STATUS_PTR: Points to RowStatusArray
 // SQL_ATTR_ROW_BIND_OFFSET_PTR: Points to BindOffset
 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_CURSOR_TYPE, (SQLPOINTER)
SQL_CURSOR_KEYSET_DRIVEN, 0);
 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_BIND_TYPE, (SQLPOINTER)
sizeof(CustStruct), 0);
 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, (SQLPOINTER)10,
0);

Oterro 11 Help Manual56

Copyright © 1982-2024 R:BASE Technologies, Inc.

 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_USE_BOOKMARKS, (SQLPOINTER)
SQL_UB_VARIABLE, 0);
 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_STATUS_PTR, RowStatusArray,
0);
 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_BIND_OFFSET_PTR,
&BindOffset, 0);

 // Bind arrays to the bookmark, CustomerID, CompanyName, Address, and
Phone columns.
 retcode = SQLBindCol(hstmt, 0, SQL_C_VARBOOKMARK, CustArray[0].Bookmark,
sizeof(CustArray[0].Bookmark), &CustArray[0].BookmarkLen);
 retcode = SQLBindCol(hstmt, 1, SQL_C_ULONG, &CustArray[0].CustomerID, 0,
&CustArray[0].CustIDInd);
 retcode = SQLBindCol(hstmt, 2, SQL_C_CHAR, CustArray[0].CompanyName,
sizeof(CustArray[0].CompanyName), &CustArray[0].NameLenOrInd);
 retcode = SQLBindCol(hstmt, 3, SQL_C_CHAR, CustArray[0].Address,
sizeof(CustArray[0].Address), &CustArray[0].AddressLenOrInd);
 retcode = SQLBindCol(hstmt, 4, SQL_C_CHAR, CustArray[0].Phone,
sizeof(CustArray[0].Phone), &CustArray[0].PhoneLenOrInd);

 // Execute a statement to retrieve rows from the Customers table.
 retcode = SQLExecDirect(hstmt, (SQLCHAR*)"SELECT CustomerID,
CompanyName, Address, Phone FROM Customers", SQL_NTS);

 // Fetch and display the first 10 rows.
 retcode = SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0);
 // DisplayCustData(CustArray, 10);

 // Call GetAction to get an action and a row number from the user.
 // while (GetAction(&Action, &RowNum)) {
 Action = SQL_FETCH_NEXT;
 RowNum = 2;
 switch (Action) {
 case SQL_FETCH_NEXT:
 case SQL_FETCH_PRIOR:
 case SQL_FETCH_FIRST:
 case SQL_FETCH_LAST:
 case SQL_FETCH_ABSOLUTE:
 case SQL_FETCH_RELATIVE:
 // Fetch and display the requested data.
 SQLFetchScroll(hstmt, Action, RowNum);
 // DisplayCustData(CustArray, 10);
 break;

 case UPDATE_ROW:
 // Check if we have reached the maximum number of buffered
updates.
 if (NumUpdates < 10) {
 // Get the new customer data and place it in the next available
element of
 // the buffered updates section of CustArray, copy the bookmark
of the row
 // being updated to the same element, and increment the update
counter.

Oterro Engine Functions 57

Copyright © 1982-2024 R:BASE Technologies, Inc.

 // Checking to see we have not already buffered an update for
this
 // row not shown.
 // GetNewCustData(CustArray, UPDATE_OFFSET + NumUpdates);
 memcpy(CustArray[UPDATE_OFFSET + NumUpdates].Bookmark,
 CustArray[RowNum - 1].Bookmark,
 CustArray[RowNum - 1].BookmarkLen);
 CustArray[UPDATE_OFFSET + NumUpdates].BookmarkLen =
 CustArray[RowNum - 1].BookmarkLen;
 NumUpdates++;
 } else {
 printf("Buffers full. Send buffered changes to the data
source.");
 }
 break;
 case DELETE_ROW:
 // Check if we have reached the maximum number of buffered
deletes.
 if (NumDeletes < 10) {
 // Copy the bookmark of the row being deleted to the next
available element
 // of the buffered deletes section of CustArray and increment
the delete
 // counter. Checking to see we have not already buffered an
update for
 // this row not shown.
 memcpy(CustArray[DELETE_OFFSET + NumDeletes].Bookmark,
 CustArray[RowNum - 1].Bookmark,
 CustArray[RowNum - 1].BookmarkLen);

 CustArray[DELETE_OFFSET + NumDeletes].BookmarkLen =
 CustArray[RowNum - 1].BookmarkLen;

 NumDeletes++;
 } else
 printf("Buffers full. Send buffered changes to the data
source.");
 break;

 case ADD_ROW:
 // reached maximum number of buffered inserts?
 if (NumInserts < 10) {
 // Get the new customer data and place it in the next available
element of
 // the buffered inserts section of CustArray and increment
insert counter.
 // GetNewCustData(CustArray, INSERT_OFFSET + NumInserts);
 NumInserts++;
 } else
 printf("Buffers full. Send buffered changes to the data
source.");
 break;

 case SEND_TO_DATA_SOURCE:

Oterro 11 Help Manual58

Copyright © 1982-2024 R:BASE Technologies, Inc.

 // If there are any buffered updates, inserts, or deletes, set the
array size
 // to that number, set the binding offset to use the data in the
buffered
 // update, insert, or delete part of CustArray, and call
SQLBulkOperations to
 // do the updates, inserts, or deletes. Because we will never have
more than
 // 10 updates, inserts, or deletes, we can use the same row status
array.
 if (NumUpdates) {
 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, (SQLPOINTER)
NumUpdates, 0);
 BindOffset = UPDATE_OFFSET * sizeof(CustStruct);
 SQLBulkOperations(hstmt, SQL_UPDATE_BY_BOOKMARK);
 NumUpdates = 0;
 }

 if (NumInserts) {
 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, (SQLPOINTER)
NumInserts, 0);
 BindOffset = INSERT_OFFSET * sizeof(CustStruct);
 SQLBulkOperations(hstmt, SQL_ADD);
 NumInserts = 0;
 }

 if (NumDeletes) {
 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, (SQLPOINTER)
NumDeletes, 0);
 BindOffset = DELETE_OFFSET * sizeof(CustStruct);
 SQLBulkOperations(hstmt, SQL_DELETE_BY_BOOKMARK);
 NumDeletes = 0;
 }

 // If there were any updates, inserts, or deletes, reset the
binding offset
 // and array size to their original values.
 if (NumUpdates || NumInserts || NumDeletes) {
 SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, (SQLPOINTER)10,
0);
 BindOffset = 0;
 }
 break;
 }
 // }

 // Close the cursor.
 SQLFreeStmt(hstmt, SQL_CLOSE);
}

Oterro Engine Functions 59

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.9 SQLCancel

SQLCancel closes the cursor associated with the hstmt and discards all pending results.

Syntax

RETCODE = SQLCancel (hstmt)

Arguments

Type Argument Use Description

Long hstmt Input The statement handle.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

SQLCancel has the same effect as calling SQLFreeStmt with SQL_CLOSE as the option.

Related Functions

Function Description

SQLExecDirect Executes an SQL statement.

SQLExecute Executes a prepared SQL statement.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFreeStmt Ends processing on the statement.

SQLSetStmtOption Sets options for a statement handle.

SQLSpecialColumns Returns information about a set of columns.

SQLStatistics Returns statistics for tables and indexes.

Errors

SQLSTATE Description

S1000 An error has occurred that has no defined SQLSTATE—see the error message text.

S1001 A memory allocation failure.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLCancel Lib "ODBC32.DLL" (ByVal hstmt&) As Integer

CODE:
Private Sub ms2native_Click()
 Dim sqlstring as String
 Dim cblong1 As Long
 Dim nativesql As String * 512
 sqlstring = "SELECT * FROM numbers" & vbNullChar
 retcode = SQLNativeSql(hdbc&, sqlstring, SQL_NTS, nativesql, 512,
cblong1)
 errorcheck retcode
 bufstring = InputBox(sqlstring, "SQLNativeSql", nativesql)

Oterro 11 Help Manual60

Copyright © 1982-2024 R:BASE Technologies, Inc.

 retcode = SQLCancel(hStmt&)
End Sub

4.10 SQLCloseCursor

SQLCloseCursor closes a cursor that has been opened on a statement and discards pending results.

Syntax

RETCODE = SQLCloseCursor(StatementHandle)

Arguments

Type Argument Use Description

Long StatementHandle Input Statement handle.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Errors

When SQLCloseCursor returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLGetDiagRec with a HandleType of SQL_HANDLE_STMT and a Handle
of StatementHandle. The following table lists the SQLSTATE values commonly returned by
SQLCloseCursor and explains each one in the context of this function; the notation "(DM)" precedes the
descriptions of SQLSTATEs returned by the Driver Manager. The return code associated with each
SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state No cursor was open on the StatementHandle. (This is returned
only by an ODBC 3.x driver.)

HY000 General error An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined.
The error message returned by SQLGetDiagRec in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation error The driver was unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error (DM) An asynchronously executing function was called for the
StatementHandle and was still executing when this function was
called.

(DM) SQLExecute, SQLExecDirect, SQLBulkOperations, or
SQLSetPos was called for the StatementHandle and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

HY013 Memory management error The function call could not be processed because the underlying
memory objects could not be accessed, possibly because of low
memory conditions.

HYT01 Connection timeout expired The connection timeout period expired before the data source
responded to the request. The connection timeout period is set
through SQLSetConnectAttr,
SQL_ATTR_CONNECTION_TIMEOUT.

IM001 Driver does not support this
function

(DM) The driver associated with the StatementHandle does not
support the function.

Oterro Engine Functions 61

Copyright © 1982-2024 R:BASE Technologies, Inc.

Comments

SQLCloseCursor returns SQLSTATE 24000 (Invalid cursor state) if no cursor is open. Calling
SQLCloseCursor is equivalent to calling SQLFreeStmt with the SQL_CLOSE option, with the exception that
SQLFreeStmt with SQL_CLOSE has no effect on the application if no cursor is open on the statement,
while SQLCloseCursor returns SQLSTATE 24000 (Invalid cursor state).

Note: If an ODBC 3.x application working with an ODBC 2.x driver calls SQLCloseCursor when no
cursor is open, SQLSTATE 24000 (Invalid cursor state) is not returned, because the Driver Manager
maps SQLCloseCursor to SQLFreeStmt with SQL_CLOSE.

Related Functions

Function Description

SQLCancel Canceling statement processing

SQLFreeHandle Freeing a handle

SQLMoreResults Processing multiple result sets

Code Example

// SQLBrowseConnect_Function.cpp
// compile with: odbc32.lib
#include <windows.h>
#include <sqltypes.h>
#include <sqlext.h>

#define BRWS_LEN 100
SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;
SQLRETURN retcode;
SQLCHAR szConnStrIn[BRWS_LEN], szConnStrOut[BRWS_LEN];
SQLSMALLINT cbConnStrOut;

void GetUserInput(SQLCHAR * szConnStrOut, SQLCHAR * szConnStrIn) {}

int main() {
 // Allocate the environment handle.
 retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {

 // Set the version environment attribute.
 retcode = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER*)
SQL_OV_ODBC3, 0);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {

 // Allocate the connection handle.
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 // Call SQLBrowseConnect until it returns a value other than
SQL_NEED_DATA
 // (pass data source name the first time). If SQL_NEED_DATA is
returned, call GetUserInput

Oterro 11 Help Manual62

Copyright © 1982-2024 R:BASE Technologies, Inc.

 // (not shown) to build a dialog from the values in
szConnStrOut. The user-supplied values
 // are returned in szConnStrIn, which is passed in the next
call to SQLBrowseConnect.

 strcpy_s((char*)szConnStrIn, _countof(szConnStrIn),
"DSN=Sales");
 do {
 retcode = SQLBrowseConnect(hdbc, szConnStrIn, SQL_NTS,
 szConnStrOut, BRWS_LEN, &cbConnStrOut);
 if (retcode == SQL_NEED_DATA)
 GetUserInput(szConnStrOut, szConnStrIn);
 } while (retcode == SQL_NEED_DATA);

 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
{

 // Allocate the statement handle.
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 if (retcode == SQL_SUCCESS || retcode ==
SQL_SUCCESS_WITH_INFO)
 // Process data after successful connection
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 SQLDisconnect(hdbc);
 }
 }
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 }
 }
 SQLFreeHandle(SQL_HANDLE_ENV, henv);
}

4.11 SQLColAttributes

SQLColAttributes returns several different types of information about a result set. The information is
either returned as a string or as a 32-bit integer.

Syntax

RETCODE = SQLColAttributes(hstmt, icol, fDescType, rgbDesc, cbDescMax, pcbDesc, pfDesc)

Arguments

Type Argument Use Description

Long hstmt Input The statement handle.

Integer icol Input The column number in the result data, starting at 1.

Integer fDescType Input The type of information desired.

String rgbDesc Output Where to put the string output data.

Integer cbDescMax Input The maximum number of bytes to store in the rgbDesc buffer.

Integer pcbDesc Output The number of bytes placed in the rgbDesc buffer.

Long pfDesc Output A pointer to a 32-bit integer result.

Return Values

Oterro Engine Functions 63

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Information Types

fDescType Constant Description

SQL_COLUMN_AUTO_INCREMENT 1 if icol is an auto-increment column, 0 otherwise. By ODBC
definition, the Oterro database autonumber columns are not auto-
increment columns; therefore, this has no significance on Oterro
database autonumber columns.

SQL_COLUMN_CASE_SENSITIVE 1 if sorts on icol are case sensitive, 0 otherwise.

SQL_COLUMN_COUNT The number of columns in this result set; when calling with this
parameter, icol can be zero.

SQL_COLUMN_DISPLAY_SIZE The number of spaces which are required to display this column on
the screen.

SQL_COLUMN_LABEL The label for the column specified by icol.

SQL_COLUMN_LENGTH The storage size of the column specified by icol. The space this
column requires when fetching with bound columns or calling
SQLGetData with SQL_C_DEFAULT as the data type.

SQL_COLUMN_MONEY 1 if icol is the currency data type, 0 otherwise.

SQL_COLUMN_NAME The name of the column specified by icol.

SQL_COLUMN_NULLABLE 1 if a NULL value is legal in this column, 0 if NULLs are not allowed.

SQL_COLUMN_OWNER_NAME The owner of the table containing the column specified by icol.

SQL_COLUMN_PRECISION The numeric precision of the column icol; Oterro database NUMERIC
data type only.

SQL_COLUMN_QUALIFIER_NAME The qualifier of the table containing the column specified by icol.

SQL_COLUMN_SCALE The numeric scale of icol; Oterro database NUMERIC data type only.

SQL_COLUMN_SEARCHABLE This set defines which operators can be used to search on the column
specified by icol.

The operators are:
SQL_UNSEARCHABLE (0)
SQL_LIKE_ONLY (1)
SQL_ALL_EXCEPT_LIKE (2)
SQL_SEARCHABLE (3)

Oterro uses operators SQL_ALL_EXCEPT_LIKE (2) and
SQL_SEARCHABLE (3).

SQL_COLUMN_TABLE_NAME The name of the table containing the column specified by icol.

SQL_COLUMN_TYPE The SQL data type of the column specified by icol.

SQL_COLUMN_TYPE_NAME The Oterro name for the data type of the column specified by icol.

SQL_COLUMN_UNSIGNED 1 if icol is unsigned, 0 otherwise. Oterro Engine returns 0, it does not
allow unsigned.

SQL_COLUMN_UPDATABLE Depending on the read/write permissions of icol, either:
SQL_ATTR_READONLY (0)
SQL_ATTR_WRITE (1)
SQL_ATTR_READWRITE_UNKNOWN (2)

Related Functions

Function Description

SQLDescribeCol Describes a column in a result set.

SQLFetch Fetches one row of a result set.

SQLGetData Gets result data for a column in a result set.

SQLGetTypeInfo Returns information about the data types in the database.

SQLNumResultCols Returns the number of columns in a result set.

Errors

SQLSTATE Description

Oterro 11 Help Manual64

Copyright © 1982-2024 R:BASE Technologies, Inc.

01004 The data was truncated (SQL_SUCCESS_WITH_INFO was returned).

24000 An invalid cursor state: A cursor is currently open on the statement handle.

S1000 An error has occurred that has no defined SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1002 An invalid column number.

S1090 An invalid string or buffer length.

S1091 The descriptor type was out of range—fDescType was not a valid information type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLColAttributes Lib "ODBC32.DLL" (ByVal hstmt&, ByVal icol%, ByVal fDescType%,
ByVal rgbDesc$, ByVal cbDescMax%, pcbDesc%, pfDesc&) As Integer

CODE:
Global xarray1(50) As Variant
Global sqlstring As String

Private Sub ms2descr_Click()
 Dim i As Integer
 Dim n As Integer
 Dim szcol11 As String * 18
 Dim cbcol11 As Integer
 Dim cbcol12 As Integer
 Dim cblong1 As Long
 Dim cbcol13 As Integer
 Dim cbcol14 As Integer
 sqlstring = "select * from texts" & vbNullChar
 retcode = SQLExecDirect(hstmt&, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLNumResultCols(hStmt&, colnum)
 errorcheck retcode
 i = 1
 Do While i <= colnum
 retcode = SQLDescribeCol(hStmt&, i, szcol11, 18, cbcol11,
cbcol12, cblong1, cbcol13, cbcol14)
 errorcheck retcode
 xarray1(i) = Chop(szcol11)
 retcode = SQLColAttributes(hStmt&, i, SQL_COLUMN_DISPLAY_SIZE,
szcol11, 18, cbcol11, cblong1)
 errorcheck retcode
 xarray1(i) = xarray1(i) & "; " & cblong1
 retcode = SQLColAttributes(hStmt&, i, SQL_COLUMN_SEARCHABLE,
szcol11, 18, cbcol11, cblong1)
 errorcheck retcode
 xarray1(i) = xarray1(i) & "; " & cblong1
 i = i + 1
 Loop
 view2.List1.Clear
 i = 1
 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)

Oterro Engine Functions 65

Copyright © 1982-2024 R:BASE Technologies, Inc.

 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.12 SQLColumnPrivileges

SQLColumn Privileges returns a list of columns and associated privileges for the specified table.

Syntax

RETCODE = SQLColumnPrivileges(hstmt, szTableQualifier, cbTableQualifier, szTableOwner,

cbTableOwner, szTableName, cbTableName, szColumnName, cbColumnName)

Arguments

Type Argument Use Description

Long hstmt Input The statement handle.

String szTableQualifier Input The table qualifier.

Integer cbTableQualifier Input The length of the table qualifier.

String szTableOwner Input The name of the table owner.

Integer cbTableOwner Input The length of the table owner name.

String szTableName Input The table name.

Integer cbTableName Input The length of the table name.

String szColumnName Input The string search pattern for column names.

Integer cbColumnName Input The length of the column name.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or

SQL_INVALID_HANDLE.

Result Set

Column Name Data Type Comments

TABLE_QUALIFIER TEXT 18 The table qualifier. Always NULL for the Oterro Engine.

TABLE_OWNER TEXT 18 The table owner. Always NULL for the Oterro Engine.

TABLE_NAME TEXT 18 The table name.

COLUMN_NAME TEXT 18 The column name.

GRANTOR TEXT 18 Name of the user who granted the privilege. Always NULL for
the Oterro Engine.

GRANTEE TEXT 18 Name of the user granted the privilege.

PRIVILEGE TEXT 128 Identifies the column privilege: SELECT, UPDATE, INSERT,
DELETE, ALTER, REFERENCE.

IS_GRANTABLE TEXT 3 Indicates whether the grantee is permitted to grant privileges
to other users. Always NULL for the Oterro Engine.

Related Functions

Function Description

SQLColumns Returns the columns in a table(s).

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLTablePrivileges Returns the privileges assigned to the table.

Oterro 11 Help Manual66

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLTables Returns the tables in a database.

Errors

SQLSTATE Description

01000 A driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO)

08S01 The data source connection failed before the function completed processing.

24000 An invalid cursor state. A cursor is currently open on the statement handle.

IM001 The driver associated with the hstmt does not support the function.

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1008 An operation was canceled.

S1010 The statement was not prepared.

S1090 An invalid string or buffer length.

S1C00 The driver or data source does not support the specified type.

S1T00 The timeout period expired before the data source returned the result.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLColumnPrivileges Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szTableQualifier$, ByVal
cbTableQualifier%, ByVal szTableOwner$, ByVal cbTableOwner%, ByVal szTableName$, ByVal
cbTableName%, ByVal szColumnName$, ByVal cbColumnName%) As Integer

CODE:
Global colnum As Integer
Global colresults As String * 5000
Global cbcolresults As Long

Private Sub mdb1cpriv_Click()
 retcode = SQLColumnPrivileges(hStmt&, "", 0, "", 0, "bigtext", 7, "",
0)
 errorcheck retcode
 loadtest
End Sub

Sub loadtest()
 Dim i As Integer
 Dim cblong1 As Long
 Dim cbint1 As Integer
 i = 0
 retcode = SQLNumResultCols(hStmt&, colnum)
 errorcheck retcode
 i = 1
 Do While SQLFetch(hStmt&) = SQL_SUCCESS
 Do While i <= colnum
 retcode = SQLGetData(hStmt&, i, SQL_C_CHAR, colresults,
5000, cbcolresults)
 view1.text1.Text = view1.text1.Text & vbCrLf & "Col" & i &
": " & Chop(colresults)
 i = i + 1

Oterro Engine Functions 67

Copyright © 1982-2024 R:BASE Technologies, Inc.

 Loop
 i = 1
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.13 SQLColumns

SQLColumns returns the list of columns for a given table.

Syntax

RETCODE = SQLColumns(hstmt, szTableQualifier, cbTableQualifier, szTableOwner, cbTableOwner,

szTableName, cbTableName, szColumnName, cbColumnName)

Arguments

Type Argument Use Description

Long hstmt Input The statement handle.

String szTableQualifier Input The buffer containing the table qualifier.

Long cbTableQualifier Input The length of the table qualifier.

String szTableOwner Input The buffer containing the table-owner name.

Long cbTableOwner Input The length of the table-owner name.

String szTableName Input The buffer containing the table name.

Long cbTableName Input The length of the table name.

String szColumnName Input The buffer containing the column name.

Long cbColumnName Input The length of the column name.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Result Set

Column Name Data Type Comments

TABLE_QUALIFIER TEXT 18 The table qualifier. Always NULL for the Oterro Engine.

TABLE_OWNER TEXT 18 The table owner name. Always NULL for the Oterro
Engine.

TABLE_NAME TEXT 18 The table name.

COLUMN_NAME TEXT 18 The column name.

DATA_TYPE INTEGER Either the ODBC or Oterro database data type. See
SQLGetTypeInfo for a list of valid data types.

TYPE_NAME TEXT 8 The textual name of the data type, for example, INTEGER.

PRECISION INTEGER The precision of the data type for the COLUMN_NAME.

LENGTH INTEGER The length of the data type for COLUMN_NAME.

SCALE INTEGER The scale of the data type for COLUMN_NAME.

RADIX INTEGER The base of the number system used in the database.

10 for all numeric data types (INTEGER, DOUBLE etc.).

NULL for all non-numeric data types (TEXT, DATE, etc.).

NULLABLE INTEGER Indicates if NULL values are allowed in the column.

REMARKS NOTE A description of the column, if one has been defined.

Oterro 11 Help Manual68

Copyright © 1982-2024 R:BASE Technologies, Inc.

Comments

The result set is retrieved by using SQLFetch.

Always use NULL for cbTableQualifier and use NULL for cbTableOwner when accessing the Oterro Engine.

Related Functions

Function Description

SQLColumnPrivileges Returns the privileges assigned to a column.

SQLSpecialColumns Returns information about a set of columns.

SQLTablePrivileges Returns the privileges assigned to the table.

SQLTables Returns the tables in a database.

Errors

SQLSTATE Description

01000 A driver-specific informational message. (The function returns
SQL_SUCCESS_WITH_INFO.)

08S01 The data source connection failed before the function completed processing.

24000 An invalid cursor state: A cursor is currently open on the statement handle.

IM001 The driver associated with the hstmt does not support the function.

S1000 An error has occurred that has no defined SQLSTATE—see the error message
text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLColumns Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szTableQualifier$, ByVal
cbTableQualifier%, ByVal szTableOwner$, ByVal cbTableOwner%, ByVal szTableName$, ByVal
cbTableName%, ByVal szColumnName$, ByVal cbColumnName%) As Integer

CODE:
Global colnum As Integer
Global szTableName As String * 20
Global cbTableName As Integer
Global szFirst As String * 1500
Global cbFirst As Long

cbTableName = Len(dbstr1.list1.List(list1.ListIndex)) - 2
szTableName = Right(dbstr1.list1.List(list1.ListIndex), cbTableName) &
vbNullChar
retcode = SQLColumns(hstmt&, "", 0, "", 0, szTableName, cbTableName, "", 0)
 errorcheck retcode
loadgrid

Sub loadgrid()
 Dim i As Integer
 Dim n As Integer
 n = 1
 i = 1

Oterro Engine Functions 69

Copyright © 1982-2024 R:BASE Technologies, Inc.

 retcode = SQLNumResultCols(hstmt&, colnum)
 errorcheck retcode
 Do While SQLFetch(hstmt&) = SQL_SUCCESS
 dbstr1.Grid1.Row = n
 Do While i <= colnum
 retcode = SQLGetData(hstmt&, i, SQL_C_CHAR, szFirst, 255,
cbFirst)
 If dbstr1.Grid1.ColWidth(i) < Abs(cbFirst) * 120 Then
 dbstr1.Grid1.ColWidth(i) = Abs(cbFirst) * 120
 End If
 dbstr1.Grid1.Col = i
 dbstr1.Grid1.Text = Chop(szFirst)
 i = i + 1
 Loop
 n = n + 1
 i = 1
 Loop
 retcode = SQLFreeStmt(hstmt&, SQL_CLOSE)
End Sub

4.14 SQLConnect

SQLConnect establishes a connection to a database. This connection handle is used by the program to
store all the information related to the connection, such as general status information, transaction state,
and error information.

Syntax

RETCODE = SQLConnect(hdbc, szDSN, cbDSN, szUID, cbUID, szAuthStr, cbAuthStr)

Arguments

Type Argument Use Description

Long hdbc Input The database connection handle.

String szDSN Input The buffer containing the database name.

Integer cbDSN Input The length of the database name.

String szUID Input The buffer containing the user identifier.

Integer cbUID Input The length of the user identifier.

String szAuthStr Input The buffer containing the password.

Integer cbAuthStr Input The length of the password.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

Database names must contain explicit paths.

When the user does not have access to any of the tables in the database, the value SQL_ERROR is
returned.

Oterro 11 Help Manual70

Copyright © 1982-2024 R:BASE Technologies, Inc.

By default, transaction processing is set ON, and AUTOCOMMIT is set ON for this function. You can
override these defaults by calling the function SQLSetConnectOption with the appropriate arguments, or
by setting AUTOCOMMIT OFF or TRANSACT OFF in the OTERRO11.CFG file.

When a user identifier and password are not defined, you must send a NULL, or the string "NONE" or
"PUBLIC" for both.

When SQLConnect is called without releasing the connection handle, the connection options that were
available in the previous connection are available in the new one.

When a database is connected using SQLConnect, the ODBC Driver Manager is not used. To operate
through the ODBC Driver Manager, use SQLDriverConnect.

Since the SQLAPI.BAS is defined to connect through the ODBC Driver Manager, this function will not
work. To use this function, the SQLAPI.BAS file must be modified to substitute "OTERRO11.DLL" for
"ODBC32.DLL" in the Declare Function statements.

Related Functions

Function Description
SQLAllocConnect Allocates a connection handle.

SQLBrowseConnect Retrieves values required to connect to a data source.

SQLDataSources Returns the data source names.

SQLDisconnect Closes the connection to a database.

SQLDriverConnect Prompts for information to open a connection to a database.

SQLDrivers Returns the driver descriptions.

SQLFreeConnect Frees the connection handle.

SQLGetConnectOption Queries the status of a connection option.

SQLSetConnectOption Sets a database connection option.

Errors

SQLSTATE Description
08001 Unable to connect to the data source.

08002 The connection is already in use.

08004 The data source rejected the connection.

28000 No access is available for this user.

S1000 An error has occurred that has no defined
SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLConnect Lib "ODBC32.DLL" (ByVal hdbc&, ByVal szDSN$, ByVal cbDSN%, ByVal
szUID$, ByVal cbUID%, ByVal szAuthStr$, ByVal cbAuthStr%) As Integer

CODE:
Global Const xdisco = "No Database Connected"
Global dbstr As String

dbstr = "c:\database\mydata"
dbconn dbstr

Sub dbconn(dbstr As String) 'uses dbstr for database name

Oterro Engine Functions 71

Copyright © 1982-2024 R:BASE Technologies, Inc.

 retcode = SQLAllocConnect(henv&, hdbc&)
 retcode = SQLConnect(hdbc&, dbstr, SQL_NTS, " ", 0, " ", 0)
 errorcheck retcode
 If retcode = 0 Then
 Else
 dbstr = xdisco
 End If
 retcode = SQLAllocStmt(hdbc&, hstmt&)
 errorcheck retcode
End Sub

4.15 SQLDataSources

SQLDataSources returns a list of data source names from the ODBC Driver Manager.

Syntax

RETCODE = SQLDataSources(hEnv, fDirection, pucDSN, sDSNMaxLen, psDSNLen, pucDesc,

sDescMaxLen, psDescLen)

Arguments

Type Argument Use Description
Long hEnv Input The environment handle.

Integer fDirection Input Determines if the Driver Manager fetches the next data
source name in the list (SQL_FETCH_NEXT) or the first
(SQL_FETCH_FIRST).

String pucDSN Output Pointer to storage for the data source name.

Integer sDSNMaxLen Input Maximum length of the pucDSN buffer.

Integer psDSNLen Output Total number of bytes available to return in pucDSN.

String pucDesc Output Pointer to storage for the description of the driver
associated with the data source.

Integer sDescMaxLen Input Maximum length of the pucDesc buffer.

Integer psDescLen Output Total number of bytes available to return in pucDesc.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_ERROR, or

SQL_INVALID_HANDLE

Comments

Because SQLDataSources is implemented by the ODBC Driver Manager it is supported for all drivers.
SQLDataSources allows you to query the list of data source names without displaying a secondary
window as with SQLDriverConnect.

Related Functions

Function Description
SQLBrowseConnect Retrieves values required to connect to a data source.

SQLConnect Opens a connection to a database.

SQLDriverConnect Prompts for information to open a connection to a database.

Oterro 11 Help Manual72

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLDrivers Returns driver descriptions and attributes.

Errors

SQLSTATE Description
01000 A Driver Manager-specific informational message (Function returns

SQL_SUCCESS_WITH_INFO).

01004 The data was truncated (SQL_SUCCESS_WITH_INFO was returned).

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

S1103 The direction option was out of range.

Visual Basic Example

SQLAPI.BAS:

Declare Function SQLDataSources Lib "ODBC32.DLL" (ByVal henv&, ByVal fDirection%, ByVal pucDSN$,
ByVal sDSNMaxLen%, psDSNLen%, ByVal pucDesc$, ByVal sDescMaxLen%, psDescLen%) As Integer

CODE:
Global szOut1 As String * 512
Global cbOut1 As Integer
Global szOut2 As String * 512
Global cbOut2 As Integer
Global xarray1(50) As Variant

Private Sub mdr1data_Click()
 retcode = SQLDataSources(hEnv&, SQL_FETCH_FIRST, szOut1, 512, cbOut1,
szOut2, 512, cbOut2)
 errorcheck retcode
 xarray1(1) = Chop(szOut1)
 i = 2
 Do While retcode = 0
 retcode = SQLDataSources(hEnv&, SQL_FETCH_NEXT, szOut1, 512,
cbOut1, szOut2, 512, cbOut2)
 If retcode <> 100 Then
 errorcheck retcode
 xarray1(i) = Chop(szOut1)
 If i < 50 Then
 i = i + 1
 End If
 End If
 Loop
 view2.List1.Clear
 i = 1
 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))

Oterro Engine Functions 73

Copyright © 1982-2024 R:BASE Technologies, Inc.

 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.16 SQLDescribeCol

SQLDescribeCol returns the column name, type, length, and scale for one column in the result set.

Syntax

RETCODE = SQLDescribeCol(hstmt, icol, szColName, cbColNameMax, pcbColName, pfSqlType,

pcbColDef, pibScale, pfNullable)

Arguments

Type Argument Use Description

Long hstmt Input The statement handle.

Integer icol Input The column number in the result data, starting at 1.

String szColName Output The buffer containing the column name.

Integer cbColNameMax Input The maximum length of the column-name buffer.

Integer pcbColName Output The number of bytes placed in the column-name buffer.

Integer pfSqlType Output The SQL data type of the column.

Long pcbColDef Output The length or precision for this column's data type.

Integer pibScale Output The scale for this column's data type, if applicable.

Integer pfNullable Output Returns one of the following: SQL_PERMIT_NULLS when
the column allows null values, SQL_NO_NULLS when
NULLS are not allowed, or SQL_NULLABLE_UNKNOWN
when unknown.

Return Values

SQL_SUCCESS, SQL_ERROR, SQL_SUCCESS_WITH_INFO, or SQL_INVALID_HANDLE

Comments

The SQL data type of the column is pfSqlType and is one of the defined SQL data types. The length of the
column definition or column precision is described by pcbColDef. Length information differs depending on
the class of the data type, as follows:

pfSqlType pcbColDef parameter contents

SQL_CHAR, SQL_VARCHAR Maximum length

SQL_DECIMAL Precision (maximum number of digits possible)

SQL_DOUBLE, SQL_FLOAT Precision

SQL_INTEGER Precision

SQL_NUMERIC Precision

SQL_REAL Precision

SQL_SMALLINT Precision

pibScale is the total number of digits to the right of the decimal point for the column referenced. pibScale
is defined only for the SQL_DECIMAL and SQL_NUMERIC data types. For example, if the Oterro database
data type of the column is NUMERIC(5,3), pcbColDef would contain the value five and pibScale would
contain the value three. Zero is returned where pibScale is either zero or undefined.

Oterro 11 Help Manual74

Copyright © 1982-2024 R:BASE Technologies, Inc.

Due to the possible presence of any RULES that are created in an Oterro database as part of the column
definition, pfNullable is always SQL_NULLABLE_UNKNOWN.

Related Functions

Function Description

SQLColAttributes Returns column attributes in a result set.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLGetData Gets result data for a column in a result set.

SQLGetTypeInfo Returns information about the data types in the database.

SQLNumResultCols Returns the number of columns in a result set.

SQLTables Returns the tables in a database.

Errors

SQLSTATE Description

01004 The data was truncated (SQL_SUCCESS_WITH_INFO was returned).

24000 An invalid cursor state: A cursor is currently open on the statement handle.

S1000 An error has occurred that has no defined SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1002 An invalid column number.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLDescribeCol Lib "ODBC32.DLL" (ByVal hstmt&, ByVal icol%, ByVal szColName$,
ByVal cbColNameMax%, pcbColName%, pfSqlType%, pcbColDef&, pibScale%, pfNullable%) As Integer

CODE:
Global xarray1(50) As Variant
Global sqlstring As String

Private Sub ms2descr_Click()
 Dim i As Integer
 Dim n As Integer
 Dim szcol11 As String * 18
 Dim cbcol11 As Integer
 Dim cbcol12 As Integer
 Dim cblong1 As Long
 Dim cbcol13 As Integer
 Dim cbcol14 As Integer
 sqlstring = "select * from texts" & vbNullChar
 retcode = SQLExecDirect(hstmt&, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLNumResultCols(hStmt&, colnum)
 errorcheck retcode
 i = 1
 Do While i <= colnum
 retcode = SQLDescribeCol(hStmt&, i, szcol11, 18, cbcol11,
cbcol12, cblong1, cbcol13, cbcol14)
 errorcheck retcode
 xarray1(i) = Chop(szcol11)

Oterro Engine Functions 75

Copyright © 1982-2024 R:BASE Technologies, Inc.

 retcode = SQLColAttributes(hStmt&, i, SQL_COLUMN_DISPLAY_SIZE,
szcol11, 18, cbcol11, cblong1)
 errorcheck retcode
 xarray1(i) = xarray1(i) & "; " & cblong1
 retcode = SQLColAttributes(hStmt&, i, SQL_COLUMN_SEARCHABLE,
szcol11, 18, cbcol11, cblong1)
 errorcheck retcode
 xarray1(i) = xarray1(i) & "; " & cblong1
 i = i + 1
 Loop
 view2.List1.Clear
 i = 1
 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.17 SQLDescribeParam

Note: This function is normally used in conjunction with SQLBindParameter. Since Visual Basic does not
support SQLBindParameter, this function is included here with the syntax for using the C or C++
programming language.

SQLDescribeParam returns the description of a parameter marker associated with a prepared SQL
statement.

Syntax

RETCODE PASCAL SQLDescribeParam (hStmt, ipar, pfSqlType, pcbColDef, pibScale, pfNullable)

Arguments

Type Argument Use Description
HSTMT hStmt Input The statement handle.

UWORD ipar Input The parameter to describe, starting at 1.

SWORD FAR* pfSqlType Output The SQL data type of the parameter.

UDWORD FAR* pcbColDef Output The length or precision for this column's data.

SWORD FAR* pibScale Output The scale for this column's data type.

SWORD FAR* pfNullable Output Returns one of the following:

SQL_NO_NULLS when the parameter does not allow
NULL values,

SQL_NULLABLE when NULL values are allowed,

SQL_NULLABLE_UNKNOWN when unknown if the
parameter allows NULL values.

Return Values

Oterro 11 Help Manual76

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQL_SUCCESS, SQL_SUCCESS_ WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or

SQL_INVALID_HANDLE.

Comments

Parameter markers are numbered from left to right in the order they appear in the SQL statement.

SQLDescribeParam does not return the type of a parameter in an SQL statement. All parameters are
input except in calls to procedures. Call SQLProcedureColumns to determine the type of each parameter
in a call to a procedure.

4.18 SQLDisconnect

SQLDisconnect closes the database connection associated with a specific connection handle.

Syntax

RETCODE = SQLDisconnect (hdbc)

Arguments

Type Argument Use Description
Long hdbc Input The database connection handle.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

When this function is called and there are uncommitted transactions, SQL_ERROR is returned. The
connection to the database cannot be removed until SQLTransact has been called to commit or rollback
the transaction(s).

When there are no outstanding transactions, any statement handles that have been allocated are
released in a manner equivalent to calling SQLFreeStmt with the SQL_DROP option.

Related Functions

Function Description
SQLAllocConnect Allocates a connection handle.

SQLBrowseConnect Retrieves values required to connect to a data source.

SQLConnect Opens a connection to a database.

SQLDriverConnect Prompts for information to open a connection to a database.

SQLFreeConnect Frees the connection handle.

Errors

SQLSTATE Description
08003 No database has been connected.

Oterro Engine Functions 77

Copyright © 1982-2024 R:BASE Technologies, Inc.

25000 A commit or rollback must be executed before disconnecting from
this database.

S1000 An error has occurred that has no defined SQLSTATE—see the
error message text.

S1001 A memory allocation failure.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLDisconnect Lib "ODBC32.DLL" (ByVal hdbc&) As Integer

CODE:
Global Const xdisco = "No Database Connected"
Global Const xexit = "end"
Global dbstr As String

quit xdisco

Sub quit(xend As String) 'xend specifies whether to disconnect or exit
 retcode = SQLFreeStmt(hstmt&, SQL_DROP)
 retcode = SQLDisconnect(hdbc&)
 retcode = SQLFreeConnect(hdbc&)
 If hdbc2 <> 0 Then
 retcode = SQLDisconnect(hdbc2&)
 retcode = SQLFreeConnect(hdbc2&)
 End If
 dbstr = xdisco
 If xend = "end" Then
 retcode = SQLFreeEnv (henv&)
 End
 End If
End Sub

4.19 SQLDriverConnect

SQLDriverConnect connects to a database through the ODBC Driver Manager. SQLDriverConnect can
display an ODBC data source dialog box in which the currently defined data sources are listed.

Syntax

RETCODE = SQLDriverConnect(hdbc, hwnd, szConnStrIn, cbConnStrIn, szConnStrOut,

cbConnStrOutMax, pcbConnStrOut, fDriverCompletion)

Arguments

Type Argument Use Description
Long hdbc Input The database connection handle.

Long hwnd Input The window handle of the calling process.

String szConnStrIn Input The connection string.

Integer cbConnStrIn Input The length of the connection string.

String szConnStrOut Output A pointer to the filled connection string.

Oterro 11 Help Manual78

Copyright © 1982-2024 R:BASE Technologies, Inc.

Integer cbConnStrOutMax Input The maximum length of the output connection string.

Integer pcbConnStrOut Output The length of the returned connection string.

integer fDriverCompletion Input How the driver is supposed to treat the connection.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Information Types

fDriverCompletion Constant Value Description
SQL_DRIVER_NOPROMPT 0 Attempt the connection with the given information.

SQL_DRIVER_COMPLETE 1 If all required information is not available, prompt
for the information.

SQL_DRIVER_COMPLETE_REQUIRED 2 If the connection cannot be made with the
information given, prompt for the information.

SQL_DRIVER_PROMPT 3 Prompt regardless of what information is given.

When fDriverCompletion is SQL_DRIVER_COMPLETE_REQUIRED, the Oterro Engine does not prompt for
any missing or incorrect parameters because the Data Source Name (DSN) is produced by the ODBC
driver manager.

Comments

By default, transaction processing is set ON and AUTOCOMMIT is set ON for this function. You can
override these defaults by calling the function SQLSetConnectOption with the appropriate arguments, or
by setting AUTOCOMMIT OFF or TRANSACT OFF in the OTERRO11.CFG file.

When the ODBC driver manager is used, a dialog box is presented to select a data source, user
identifier, and password, if necessary.

When the user identifier is already known, you might have a connection string as follows:
"DSN=DATABASE;UID=USERID;PWD=PASSWORD".

When SQLDriverConnect is called without releasing the connection handle, the connection options that
were available in the previous connection are available in the new one.

This function requires a window handle. Therefore, it must be called from within a Visual Basic form or
the window handle must be specifically passed to the function.

Related Functions

Function Description
SQLAllocConnect Allocates a connection handle.

SQLBrowseConnect Retrieves values required to connect to a data source.

SQLConnect Opens a connection to a database.

SQLDataSources Returns the data source names.

SQLDisconnect Closes the connection to a database.

SQLDrivers Returns the driver descriptions.

SQLFreeConnect Frees the connection handle.

SQLGetConnectOption Queries the status of a connection option.

SQLSetConnectOption Sets a database connection option.

Errors

Oterro Engine Functions 79

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLSTATE Description
01004 The data was truncated (SQL_SUCCESS_WITH_INFO was returned).

01S00 An unknown connection attribute was specified. The connection was
completed successfully.

08001 Unable to connect to the data source.

08002 The connection is already in use.

08004 The data source rejected the connection.

28000 No access is available for this user.

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

S1110 An invalid value for fDriverCompletion.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLDriverConnect Lib "ODBC32.DLL" (ByVal hdbc&, ByVal hwnd&, ByVal szConnStrIn$,
ByVal cbConnStrIn%, ByVal szConnStrOut$, ByVal cbConnStrOutMax%, pcbConnStrOut%, ByVal
fDriverCompletion%) As Integer

CODE:
Global szConnectOut As String * 512
Global cbConnectOut As Integer
Global dbstr As String
Global dbdir As String

Private Sub fdrvconn_Click()
 Dim i As Integer
 retcode = SQLAllocEnv(henv&)
 retcode = SQLAllocConnect(henv&, hdbc&)
 errorcheck retcode
 retcode = SQLDriverConnect(hdbc&, hwnd&, dbstr, SQL_NTS, szConnectOut,
255, cbConnectOut, SQL_DRIVER_COMPLETE)
 If retcode <> 0 Then
 errorcheck retcode
 GoTo lend
 End If
 'get the database path
 retcode = SQLGetInfo(hdbc&, SQL_DATABASE_NAME, szConnectOut, 512,
cbConnectOut)
 errorcheck retcode
 dbstr = Chop(szConnectOut)
 i = InStr(dbstr, "\")
 dbdir = Left$(dbstr, i)
 Do While i <> 0
 i = InStr(i + 1, dbstr, "\")
 If i <> 0 Then
 dbdir = Left$(dbstr, i)
 End If
 Loop
 retcode = SQLAllocStmt(hdbc&, hstmt&)
 errorcheck retcode
lend:

Oterro 11 Help Manual80

Copyright © 1982-2024 R:BASE Technologies, Inc.

End Sub

4.20 SQLDrivers

SQLDrivers lists driver descriptions and driver attribute keywords. This function is implemented by the
ODBC Driver Manager and returns information only on drivers currently listed by the ODBC
Administrator.

Syntax

RETCODE = SQLDrivers(hEnv, fDirection, pucDesc, sDescMaxLen, psDescLen, pucAttribs,

sAttribsMaxLen, psAttribsLen)

Arguments

Type Argument Use Description
Long hEnv Input The environment handle.

Integer fDirection Input Determines which driver description is fetched:
SQL_FETCH_NEXT, SQL_FETCH_FIRST

String pucDesc Output Pointer to storage for the driver description.

Integer sDescMaxLen Input The maximum length of the pucDesc buffer.

Integer sDescLen Output Total number of bytes available to return pucDesc.

String pucAttribs Output Pointer to storage for the list of driver attribute value pairs.

Integer sAttribsMaxLen Input Maximum length of the pucAttribs buffer.

Integer psAttribsLen Output Total number of bytes available to return in pucAttribs.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_ERROR, or

SQL_INVALID_HANDLE.

Comments

SQLDrivers returns the driver description in the pucDesc argument. It returns additional information
about the driver in the pucAttribs argument as a list of keyword-value pairs.

Because SQLDrivers is implemented by the ODBC Driver Manager, it is supported for all drivers.

Related Functions

Function Description
SQLBrowseConnect Retrieves values required to connect to a data source.

SQLConnect Opens a connection to a database.

SQLDataSources Returns the data source names.

SQLDriverConnect Prompts for information to open a connection to a database.

Errors

SQLSTATE Description
01000 Driver Manager-specific informational message (Function returns

SQL_SUCCESS_WITH_INFO).

Oterro Engine Functions 81

Copyright © 1982-2024 R:BASE Technologies, Inc.

01004 The data was truncated (SQL_SUCCESS_WITH_INFO was returned).

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

S1103 The direction option was out of range.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLDrivers Lib "ODBC32.DLL" (ByVal henv&, ByVal fDirection%, ByVal pucDesc$,
ByVal sDescMaxLen%, psDescLen%, ByVal pucAttribs$, ByVal sAttribsMaxLen%, psAttribsLen%) As
Integer

CODE:
Global szOut1 As String * 512
Global cbOut1 As Integer
Global szOut2 As String * 512
Global cbOut2 As Integer
Global xarray1(50) As Variant

Private Sub mdr1drv_Click()
 retcode = SQLDrivers(hEnv&, SQL_FETCH_FIRST, szOut1, 512, cbOut1,
szOut2, 512, cbOut2)
 errorcheck retcode
 xarray1(1) = Chop(szOut1)
 i = 2
 Do While retcode = 0
 retcode = SQLDrivers(hEnv&, SQL_FETCH_NEXT, szOut1, 512, cbOut1,
szOut2, 512, cbOut2)
 If retcode <> 100 Then
 errorcheck retcode
 xarray1(i) = Chop(szOut1)
 If i < 50 Then
 i = i + 1
 End If
 End If
 Loop
 view2.List1.Clear
 i = 1
 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

Oterro 11 Help Manual82

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.21 SQLEndTran

SQLEndTran requests a commit or rollback operation for all active operations on all statements
associated with a connection. SQLEndTran can also request that a commit or rollback operation be
performed for all connections associated with an environment.

Syntax

RETCODE = SQLEndTran(HandleType,Handle,CompletionType)

Argumants

Type Argument Use Description

Integer HandleType Iput Handle type identifier. Contains either SQL_HANDLE_ENV (if
Handle is an environment handle) or SQL_HANDLE_DBC (if
Handle is a connection handle).

Long Handle Input The handle, of the type indicated by HandleType, indicating
the scope of the transaction. See "Comments" for more
information.

Integer CompletionType Input One of the following two values:
SQL_COMMIT
SQL_ROLLBACK

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Errors

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open (DM) The HandleType was SQL_HANDLE_DBC, and the
Handle was not in a connected state.

08007 Connection failure during
transaction

The HandleType was SQL_HANDLE_DBC, and the
connection associated with the Handle failed during the
execution of the function, and it cannot be determined
whether the requested COMMIT or ROLLBACK occurred
before the failure.

25S01 Transaction state unknown One or more of the connections in Handle failed to
complete the transaction with the outcome specified, and
the outcome is unknown.

25S02 Transaction is still active The driver was not able to guarantee that all work in the
global transaction could be completed atomically, and
the transaction is still active.

25S03 Transaction is rolled back The driver was not able to guarantee that all work in the
global transaction could be completed atomically, and all
work in the transaction active in Handle was rolled back.

40001 Serialization failure The transaction was rolled back due to a resource
deadlock with another transaction.

40002 Integrity constraint violation The CompletionType was SQL_COMMIT, and the
commitment of changes caused integrity constraint
violation. As a result, the transaction was rolled back.

HY000 General error An error occurred for which there was no specific
SQLSTATE and for which no implementation-specific
SQLSTATE was defined. The error message returned by
SQLGetDiagRec in the *szMessageText buffer describes
the error and its cause.

Oterro Engine Functions 83

Copyright © 1982-2024 R:BASE Technologies, Inc.

HY001 Memory allocation error The driver was unable to allocate memory required to
support execution or completion of the function.

HY010 Function sequence error (DM) An asynchronously executing function was called
for a StatementHandle associated with the
ConnectionHandle and was still executing when
SQLEndTran was called. (DM) SQLExecute,
SQLExecDirect, SQLBulkOperations, or SQLSetPos was
called for a StatementHandle associated with the
ConnectionHandle and returned SQL_NEED_DATA. This
function was called before data was sent for all data-at-
execution parameters or columns.

HY012 Invalid transaction operation code (DM) The value specified for the argument
CompletionType was neither SQL_COMMIT nor
SQL_ROLLBACK.

HY013 Memory management error The function call could not be processed because the
underlying memory objects could not be accessed,
possibly because of low memory conditions.

HY092 Invalid attribute/option identifier (DM) The value specified for the argument HandleType
was neither SQL_HANDLE_ENV nor SQL_HANDLE_DBC.

HYC00 Optional feature not implemented The driver or data source does not support the
ROLLBACK operation.

HYT01 Connection timeout expired The connection timeout period expired before the data
source responded to the request. The connection
timeout period is set through SQLSetConnectAttr,
SQL_ATTR_CONNECTION_TIMEOUT.

IM001 Driver does not support this
function

(DM) The driver associated with the ConnectionHandle
does not support the function.

Comments

For an ODBC 3.x driver, if HandleType is SQL_HANDLE_ENV and Handle is a valid environment handle,
then the Driver Manager will call SQLEndTran in each driver associated with the environment. The Handle
argument for the call to a driver will be the driver's environment handle. For an ODBC 2.x driver, if
HandleType is SQL_HANDLE_ENV and Handle is a valid environment handle, and there are multiple
connections in a connected state in that environment, then the Driver Manager will call SQLTransact in
the driver once for each connection in a connected state in that environment. The Handle argument in
each call will be the connection's handle. In either case, the driver will attempt to commit or roll back
transactions, depending on the value of CompletionType, on all connections that are in a connected state
on that environment. Connections that are not active do not affect the transaction.

Note: SQLEndTran cannot be used to commit or roll back transactions on a shared environment.
SQLSTATE HY092 (Invalid attribute/option identifier) will be returned if SQLEndTran is called with
Handle set to either the handle of a shared environment or the handle of a connection on a shared
environment.

The Driver Manager will return SQL_SUCCESS only if it receives SQL_SUCCESS for each connection. If
the Driver Manager receives SQL_ERROR on one or more connections, it returns SQL_ERROR to the
application, and the diagnostic information is placed in the diagnostic data structure of the environment.
To determine which connection or connections failed during the commit or rollback operation, the
application can call SQLGetDiagRec for each connection.

Related Functions

Function Description

SQLGetInfo Returning information about a driver or data source

SQLFreeHandle Freeing a handle

SQLFreeStmt Freeing a statement handle

Oterro 11 Help Manual84

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.22 SQLError

Error information is associated with the environment handle, connection handle, and statement handle.
Error information is retrieved from SQLError one handle at a time.

Syntax

RETCODE = SQLError(henv, hdbc, hstmt, szSqlState, pfNativeError, szErrorMsg, cbErrorMsgMax,

pcbErrorMsg)

Arguments

Type Argument Use Description
Long henv Input The environment handle.

Long hdbc Input The database connection handle.

Long hstmt Input The statement handle.

String szSqlState Output The SQL state string.

Long pfNativeError Output The Oterro error code.

String szErrorMsg Output The Oterro error message text.

Integer cbErrorMsgMax Input The maximum length of the error
message text buffer.

Integer pcbErrorMsg Output The actual length of the text.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE, or

SQL_NO_DATA_FOUND

Comments

Once error information for a certain function call has been retrieved by SQLError, it cannot be read
again. If a function call returns multiple errors, SQLError must be called multiple times.

SQL_NULL_HDBC and SQL_NULL_HSTMT need to be used for hdbc and hstmt when an error has occurred
during a function call that requires a valid handle for either hdbc or hstmt, such as SQLAllocConnet,
SQLAllocStmt, SQLBrowseConnect, SQLConnect, SQLDisconnect, or SQLDriverConnect.

Errors

SQLError does not post any extended error information.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLError Lib "ODBC32.DLL" (ByVal henv&, ByVal hdbc&, ByVal hstmt&, ByVal
szsqlstate$, pfnativeerror&, ByVal szErrorMsg$, ByVal cbErrorMsgMax%, pcberrormsg%) As Integer

CODE:
Global retcode As Integer
Global dbstr As String
Global szsqlstate As String
Global pfnativeerror As String

Oterro Engine Functions 85

Copyright © 1982-2024 R:BASE Technologies, Inc.

Global aucerrortext As String

dbstr = "select * from artist"
retcode = SQLExecDirect(hStmt&, dbstr, SQL_NTS)
 errorcheck retcode

Sub errorcheck(retcode As Integer)
 Dim errorval As Integer
 Dim errormsg As String
 errorval = retcode
 If errorval <> SQL_SUCCESS Then
 Select Case errorval
 Case SQL_INVALID_HANDLE
 MsgBox "Invalid Handle", 0, "API Error"
 Case SQL_SUCCESS_WITH_INFO
 retcode = SQLError(henv&, hdbc&, hstmt&, szsqlstate,
pfnativeerror, aucerrortext, 512, 0)
 errormsg = "SQLState: " & Chop(szsqlstate) & Chr$(13) &
"NativeError: " & pfnativeerror & Chr$(13) & Chop(aucerrortext)
 MsgBox errormsg, 0, "API Error"
 Case Else
 retcode = SQLError(henv&, hdbc&, hstmt&, szsqlstate,
pfnativeerror, aucerrortext, 512, 0)
 errormsg = "SQLState: " & Chop(szsqlstate) & Chr$(13) &
"NativeError: " & pfnativeerror & Chr$(13) & Chop(aucerrortext)
 MsgBox errormsg, 0, "API Error"
 End Select
 End If
End Sub

4.23 SQLExecDirect

SQLExecDirect executes the statement in the szSqlStr buffer by sending the statement to the DBMS for
processing.

Syntax

RETCODE = SQLExecDirect (hstmt, szSqlStr, cbSqlStr)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

String szSqlStr Input The SQL statement.

Long cbSqlStr Input The length of the SQL statement.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE, or

SQL_NEED_DATA (when parameter markers are used)

Oterro 11 Help Manual86

Copyright © 1982-2024 R:BASE Technologies, Inc.

Comments

SQLExecDirect is the basic method by which data is retrieved and modified. SQL commands are passed
to the Oterro Engine by the SQLExecDirect function.

The statement in the szSqlStr buffer can be any SQL command that the Oterro database supports; those
commands are listed in "How to Use the Oterro Engine" in Chapter Two.

When the statement in the szSqlStr buffer contains the Oterro database command SELECT, a cursor
name is generated by the Oterro Engine. When the function SQLSetCursorName is used to associate a
cursor name with an hstmt, that cursor name is used instead of the cursor name generated by the Oterro
Engine. To retrieve the cursor name generated by the Oterro Engine, use the function
SQLGetCursorName.

When a prepared statement exists on the statement handle, the statement is released and all associated
memory is released.

While parameter markers are allowed within calls to SQLExecDirect, they slow down the process. Use
parameter markers with the functions SQLPrepare and SQLExecute instead of with SQLExecDirect.

Related Functions

Function Description
SQLAllocStmt Allocates a new statement handle.

SQLCancel Ends processing on a statement.

SQLExecute Executes a prepared SQL statement.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLGetCursorName Gets the name of the cursor associated with a statement handle.

SQLGetData Gets result data for a column in a result set.

SQLPrepare Prepares an SQL statement for execution.

SQLRowCount Returns the number of rows affected by the update, insert, or delete.

SQLSetCursorName Sets a cursor name for a statement handle.

Errors

SQLSTATE Description
01006 The privilege was not revoked: The user did not have the permission to revoke.

07001 The wrong number of parameters.

21001 The string parameter was truncated.

21003 The numeric parameter was out of range.

21S01 The number of values in the insert list did not match the table.

21S02 The number of columns listed in the view did not match the actual number.

22008 An invalid date, time, or timestamp parameter.

22012 Division by zero has occurred.

23000 An integrity constraint violation: A rule has been violated.

24000 An invalid cursor state: A cursor is currently open on the statement handle.

34000 An invalid cursor name: The cursor specified in the statement does not exist.

37000 A syntax error or access violation: An incorrect SQL statement.

40001 A serialization failure: The entire transaction has been rolled back to prevent deadlock.

42000 A syntax error or access violation: Did not have sufficient permissions to execute.

S0001 A table or view already exists.

S0002 A table or view does not exist.

S0011 An index already exists.

S0012 An index does not exist.

S0021 A column already exists.

S0022 A column does not exist.

S1000 An error has occurred that has no defined SQLSTATE—see the error message text.

Oterro Engine Functions 87

Copyright © 1982-2024 R:BASE Technologies, Inc.

S1001 A memory allocation failure.

S1009 An invalid argument value—a null pointer was passed.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLExecDirect Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szSqlStr$, ByVal cbSqlStr&) As
Integer

CODE:
Global sqlstring As String

sqlstring = "select * from artists"
execdir sqlstring

Sub execdir(sqlstring As String)
 retcode = SQLExecDirect(hstmt&, sqlstring, SQL_NTS)
 errorcheck retcode
End Sub

4.24 SQLExecute

SQLExecute executes the prepared SQL statement associated with hstmt.

Syntax

RETCODE = SQLExecute (hstmt)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE,
SQL_NEED_DATA (when parameter markers are used)

Comments

When the statement contains the Oterro command SELECT, a cursor name is generated by the Oterro
Engine. When the function SQLSetCursorName is used to associate a cursor name with an hstmt, that
cursor name is used instead of the cursor name generated by the Oterro Engine. To retrieve the cursor
name generated by the Oterro Engine, use the function SQLGetCursorName.

Related Functions

Function Description
SQLAllocStmt Allocates a new statement handle.

SQLCancel Ends processing on a statement.

Oterro 11 Help Manual88

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLExecDirect Executes an SQL statement.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLGetCursorName Gets the name of the cursor associated with a statement handle.

SQLGetData Gets result data for a column in a result set.

SQLPrepare Prepares an SQL statement for execution.

SQLRowCount Returns the number of rows affected by the update, insert, or delete.

SQLSetCursorName Sets a cursor name for a statement handle.

Errors

SQLSTATE Description
01006 The privilege was not revoked: The user did not have the permission to revoke.

07001 The wrong number of parameters.

21001 The string parameter was truncated.

21003 The numeric parameter was out of range.

21S01 The number of values in the insert list did not match the table.

21S02 The number of columns listed in the view did not match the actual number.

22008 An invalid date, time, or timestamp parameter.

22012 Division by zero has occurred.

23000 An integrity constraint violation: A rule has been violated.

24000 An invalid cursor state: A cursor is currently open on the statement handle.

34000 An invalid cursor name: The cursor specified in the statement does not exist.

37000 A syntax error or access violation: An incorrect SQL statement.

40001 A serialization failure: The entire transaction has been rolled back to prevent deadlock.

42000 A syntax error or access violation: Did not have sufficient permissions to execute.

S0001 A table or view already exists.

S0002 A table or view does not exist.

S0011 An index already exists.

S0012 An index does not exist.

S0021 A column already exists.

S0022 A column does not exist.

S1000 An error has occurred that has no defined SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1009 An invalid argument value—a null pointer was passed.

S1010 The statement was not prepared.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLExecute Lib "ODBC32.DLL" (ByVal hstmt&) As Integer

CODE:
Global sqlstring As String

Private Sub ms2extfetch_Click()
 Dim cblong1 As Long
 Dim cbint1 As Integer
 Dim i As Integer
 Dim n As Integer
 sqlstring = "select int1,real1,doub1 from numbers" & vbNullChar
 retcode = SQLPrepare(hStmt&, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLExecute(hStmt&)
 errorcheck retcode

Oterro Engine Functions 89

Copyright © 1982-2024 R:BASE Technologies, Inc.

 retcode = SQLSetStmtOption(hStmt&, SQL_CURSOR_TYPE,
SQL_CURSOR_DYNAMIC)
 retcode = SQLGetStmtOption(hStmt&, SQL_CURSOR_TYPE, cblong1)
 xarray1(1) = "cursor type = " & cblong1
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_FIRST, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(2) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_LAST, 1, cblong1, cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(3) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_PRIOR, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(4) = Chop(colresults)
 view2.List1.Clear
 i = 1
 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.25 SQLExtendedFetch

SQLExtendedFetch returns both a set of data as a row and scrolls through the result set according to the
current scroll arguments.

Syntax

RETCODE = SQLExtendedFetch (hstmt, fFetchType, irow, pcrow, rfgRowStatus)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Integer fFetchType Input The type of fetch; accepts one of the following:
SQL_FETCH_NEXT SQL_FETCH_FIRST SQL_FETCH_LAST
 SQL_FETCH_PRIOR SQL_FETCH_ABSOLUTE
SQL_FETCH_RELATIVE SQL_FETCH_BOOKMARK

Long irow Input The number of the row to fetch.

Long pcrow Output The number of rows actually fetched. When an error
occurs during processing, pcrow points to the row that
precedes the row with the error.

Integer rfgRowStatus Output An array of status values. The number of elements must
equal the number of rows in the rowset (as defined by the
SQL_ROWSET_SIZE statement option). The driver returns
a status value for each row fetched, which can be one of

Oterro 11 Help Manual90

Copyright © 1982-2024 R:BASE Technologies, Inc.

the following: SQL_ROW_SUCCESS, SQL_ROW_DELETED,
or SQL_ROW_UPDATED. When the number of rows fetched
is less than the number of elements in the status array,
the driver sets remaining status elements to
SQL_ROW_NOROW.

Return Values

SQL_SUCCESS, SQL_ERROR, SQL_MAX_ROWS, or SQL_INVALID_HANDLE

Comments

The SQLExtendedFetch function uses scrollable cursors only when the statement has been defined as a
scrollable cursor using SQLSetStmtOption. When SQLSetStmtOption is not used to define scrollable
cursors, SQLExtendedFetch behaves like SQLFetch. SQLFetch can use scrollable cursors but only fetches
in the direction SQL_FETCH_NEXT.

Related Functions

Function Description
SQLCancel Ends processing on a statement.

SQLColumnPrivileges Returns the privileges assigned to the columns of a table.

SQLDescribeCol Describes a column in a result set.

SQLExecDirect Executes an SQL statement.

SQLExecute Executes a prepared SQL statement.

SQLFetch Fetches one row of a result set.

SQLGetStmtOption Queries the status of a statement option.

SQLNumResultCols Returns the number of columns in a result set.

SQLProcedureColumns Returns the columns for the procedures.

SQLProcedures Returns the list of procedure names in the database.

SQLSetStmtOption Sets options for a statement handle.

SQLSpecialColumns Returns information about a set of columns.

SQLStatistics Returns statistics for tables and indexes.

SQLTablePrivileges Returns the privileges assigned to the table.

SQLTables Returns the tables in a database.

Errors

SQLSTATE Description
01000 A driver-specific informational message (The function returns

SQL_SUCCESS_WITH_INFO).

01004 The data was truncated (SQL_SUCCESS_WITH_INFO was returned). String values are
right truncated. For numeric values, the fractional part of number is truncated.

07006 The specified conversion is illegal.

08S01 The data source connection failed before the function completed processing.

22003 The numeric value is out of range: A significant truncation would have occurred.

22012 Division by zero has occurred.

24000 An invalid cursor state: A cursor is currently open on the statement handle.

40001 A serialization failure: The entire transaction has been rolled back to prevent deadlock.

IM001 The driver associated with the hstmt does not support the function.

S1000 An error has occurred that has no defined SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1002 An invalid column number.

S1106 The value specified for the argument fFetchType was not equal to: SQL_FETCH_NEXT
SQL_FETCH_FIRST SQL_FETCH_LAST SQL_FETCH_PRIOR SQL_FETCH_ABSOLUTE
SQL_FETCH_RELATIVE

Oterro Engine Functions 91

Copyright © 1982-2024 R:BASE Technologies, Inc.

S1107 The value specified with the SQL_CURSOR_TYPE statement option was
SQL_CURSOR_KEYSET_DRIVEN, but the value specified with the SQL_KEYSET_SIZE
statement option was greater than 0 and less than the value specified with the
SQL_ROWSET_SIZE statement option.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLExtendedFetch Lib "ODBC32.DLL" (ByVal hstmt&, ByVal fFetchType%, ByVal irow&,
pcrow&, rgfRowStatus%) As Integer

CODE:
Global sqlstring As String

Private Sub ms2extfetch_Click()
 Dim cblong1 As Long
 Dim cbint1 As Integer
 Dim i As Integer
 Dim n As Integer
 sqlstring = "select int1,real1,doub1 from numbers" & vbNullChar
 retcode = SQLPrepare(hStmt&, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLExecute(hStmt&)
 errorcheck retcode
 retcode = SQLSetStmtOption(hStmt&, SQL_CURSOR_TYPE,
SQL_CURSOR_DYNAMIC)
 retcode = SQLGetStmtOption(hStmt&, SQL_CURSOR_TYPE, cblong1)
 xarray1(1) = "cursor type = " & cblong1
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_FIRST, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(2) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_LAST, 1, cblong1, cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(3) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_PRIOR, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(4) = Chop(colresults)
 view2.List1.Clear
 i = 1
 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

Oterro 11 Help Manual92

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.26 SQLFetch

SQLFetch fetches the next row from the result set.

Syntax

RETCODE = SQLFetch (hstmt)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Return Values

SQL_SUCCESS, SQL_ERROR, SQL_INVALID_HANDLE, SQL_SUCCESS_WITH_INFO,
SQL_MAX_ROWS, or SQL_NO_DATA_FOUND

Comments

When designing an application using Visual Basic, after calling SQLFetch, you must use SQLGetData to
retrieve the data from the result set for each column needed.

Related Functions

Function Description
SQLColAttributes Returns column attributes in a result set.

SQLColumnPrivileges Returns the privileges assigned to the columns of a table.

SQLDescribeCol Describes a column in a result set.

SQLExecDirect Executes an SQL statement.

SQLExecute Executes a prepared SQL statement.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLGetData Gets result data for a column in a result set.

SQLNumResultCols Returns the number of columns in a result set.

SQLProcedureColumns Returns the columns for the procedures.

SQLProcedures Returns the list of procedure names in the database.

SQLStatistics Returns statistics for tables and indexes.

SQLTablePrivileges Returns the privileges assigned to the table.

SQLTables Returns the tables in a database.

Errors

SQLSTATE Description
01004 The data was truncated (SQL_SUCCESS_WITH_INFO was returned).

07006 The specified conversion is illegal.

22003 The numeric value is out of range: A significant truncation would have
occurred.

22012 Division by zero has occurred.

24000 An invalid cursor state: A cursor is currently open on the statement
handle.

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

Oterro Engine Functions 93

Copyright © 1982-2024 R:BASE Technologies, Inc.

S1002 An invalid column number.

Visual Basic Example
SQLAPI.BAS:
Declare Function SQLFetch Lib "ODBC32.DLL" (ByVal hstmt&) As Integer

CODE:
Global colnum As Integer
Global bufstring As String
Global cbcol1 As Long
Global colresults As String * 5000
Global starttime As Date
Global endtime As Date
Global elapsed As Integer

Sub getall()
 Dim i As Integer
 retcode = SQLNumResultCols(hstmt, colnum)
 errorcheck retcode
 bufstring = sql1.Text
 results.AddItem UCase(bufstring)
 starttime = Time
 Do While SQLFetch(hstmt&) = SQL_SUCCESS
 i = 1
 Do While i <= colnum
 retcode = SQLGetData(hstmt&, i, SQL_C_CHAR, colresults,
5000, cbcol1)
 errorcheck retcode
 If i = 1 Then
 bufstring = Chop(colresults)
 Else
 bufstring = bufstring & "," & Chop(colresults)
 End If
 i = i + 1
 Loop
 results.AddItem bufstring
 Loop
 endtime = Time
 elapsed = DateDiff("s", starttime, endtime)
 bufstring = "Elapsed Time: " & elapsed & " seconds"
 results.AddItem bufstring
 retcode = SQLFreeStmt(hstmt&, SQL_CLOSE)
End Sub

4.27 SQLFetchScroll

SQLFetchScroll fetches the specified rowset of data from the result set and returns data for all bound
columns. Row sets can be specified at an absolute or relative position or by bookmark. SQLFreeHandle
frees resources associated with a specific environment, connection, statement, or descriptor handle. This
new function in Oterro 3.0 for freeing handles is in addition to the ODBC 2.0 functions SQLFreeConnect
(for freeing a connection handle) and SQLFreeEnv (for freeing an environment handle). SQLFreeConnect
and SQLFreeEnv are both deprecated in ODBC 3.x.

Oterro 11 Help Manual94

Copyright © 1982-2024 R:BASE Technologies, Inc.

Syntax

RETCODE = SQLFetchScroll(StatementHandle,FetchOrientation,FetchOffset)

Arguments

Type Argument Use Description

Long StatementHandle Input Statement handle.

Integer FetchOrientation Input Type of fetch:
SQL_FETCH_NEXT
SQL_FETCH_PRIOR
SQL_FETCH_FIRST
SQL_FETCH_LAST
SQL_FETCH_ABSOLUTE
SQL_FETCH_RELATIVE
SQL_FETCH_BOOKMARK

Integer FetchOffset Input Number of the row to fetch. The interpretation of this argument
depends on the value of the FetchOrientation argument.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Errors

When SQLFetchScroll returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value can be obtained by calling SQLGetDiagRec with a HandleType of SQL_HANDLE_STMT
and a Handle of StatementHandle. The following table lists the SQLSTATE values commonly returned by
SQLFetchScroll and explains each one in the context of this function; the notation "(DM)" precedes the
descriptions of SQLSTATEs returned by the Driver Manager. The return code associated with each
SQLSTATE value is SQL_ERROR, unless noted otherwise.

For all those SQLSTATEs that can return SQL_SUCCESS_WITH_INFO or SQL_ERROR (except 01xxx
SQLSTATEs), SQL_SUCCESS_WITH_INFO is returned if an error occurs on one or more, but not all, rows
of a multirow operation, and SQL_ERROR is returned if an error occurs on a single-row operation.

SQLSTATEError Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 String data, right
truncated

String or binary data returned for a column resulted in the
truncation of nonblank character or non-NULL binary data. If it was
a string value, it was right-truncated.

01S01 Error in row An error occurred while fetching one or more rows. (If this
SQLSTATE is returned when an ODBC 3.x application is working with
an ODBC 2.x driver, it can be ignored.)

01S06 Attempt to fetch before
the result set returned
the first rowset

The requested rowset overlapped the start of the result set when
FetchOrientation was SQL_FETCH_PRIOR, the current position was
beyond the first row, and the number of the current row is less than
or equal to the rowset size.

The requested rowset overlapped the start of the result set when
FetchOrientation was SQL_FETCH_PRIOR, the current position was
beyond the end of the result set, and the rowset size was greater
than the result set size.

The requested rowset overlapped the start of the result set when
FetchOrientation was SQL_FETCH_RELATIVE, FetchOffset was
negative, and the absolute value of FetchOffset was less than or
equal to the rowset size.

Oterro Engine Functions 95

Copyright © 1982-2024 R:BASE Technologies, Inc.

The requested rowset overlapped the start of the result set when
FetchOrientation was SQL_FETCH_ABSOLUTE, FetchOffset was
negative, and the absolute value of FetchOffset was greater than the
result set size but less than or equal to the rowset size.

(Function returns SQL_SUCCESS_WITH_INFO.)

01S07 Fractional truncation The data returned for a column was truncated. For numeric data
types, the fractional part of the number was truncated. For time,
timestamp, and interval data types containing a time component,
the fractional portion of the time was truncated.

(Function returns SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

The data value of a column in the result set could not be converted
to the data type specified by TargetType in SQLBindCol.

Column 0 was bound with a data type of SQL_C_BOOKMARK, and
the SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_VARIABLE.

Column 0 was bound with a data type of SQL_C_VARBOOKMARK,
and the SQL_ATTR_USE_BOOKMARKS statement attribute was not
set to SQL_UB_VARIABLE.

07009 Invalid descriptor index The driver was an ODBC 2.x driver that does not support
SQLExtendedFetch, and a column number specified in the binding
for a column was 0.

Column 0 was bound, and the SQL_ATTR_USE_BOOKMARKS
statement attribute was set to SQL_UB_OFF.

08S01 Communication link
failure

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

22001 String data, right
truncated

A variable-length bookmark returned for a column was truncated.

22002 Indicator variable
required but not supplied

NULL data was fetched into a column whose StrLen_or_IndPtr set by
SQLBindCol (or SQL_DESC_INDICATOR_PTR set by
SQLSetDescField or SQLSetDescRec) was a null pointer.

22003 Numeric value out of
range

Returning the numeric value (as numeric or string) for one or more
bound columns would have caused the whole (as opposed to
fractional) part of the number to be truncated.

22007 Invalid datetime format A character column in the result set was bound to a date, time, or
timestamp C structure, and a value in the column was, respectively,
an invalid date, time, or timestamp.

22012 Division by zero A value from an arithmetic expression was returned, which resulted
in division by zero.

22015 Interval field overflow Assigning from an exact numeric or interval SQL type to an interval
C type caused a loss of significant digits in the leading field.

When fetching data to an interval C type, there was no
representation of the value of the SQL type in the interval C type.

22018 Invalid character value
for cast specification

A character column in the result set was bound to a character C
buffer, and the column contained a character for which there was no
representation in the character set of the buffer.

The C type was an exact or approximate numeric, a datetime, or an
interval data type; the SQL type of the column was a character data
type; and the value in the column was not a valid literal of the
bound C type.

24000 Invalid cursor state The StatementHandle was in an executed state but no result set was
associated with the StatementHandle.

40001 Serialization failure The transaction in which the fetch was executed was terminated to
prevent deadlock.

40003 Statement completion
unknown

The associated connection failed during the execution of this
function, and the state of the transaction cannot be determined.

Oterro 11 Help Manual96

Copyright © 1982-2024 R:BASE Technologies, Inc.

HY000 General error An error occurred for which there was no specific SQLSTATE and for
which no implementation-specific SQLSTATE was defined. The error
message returned by SQLGetDiagRec in the *MessageText buffer
describes the error and its cause.

HY001 Memory allocation error The driver was unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled Asynchronous processing was enabled for the StatementHandle. The
function was called, and before it completed execution, SQLCancel
was called on the StatementHandle. Then the function was called
again on the StatementHandle.

The function was called, and before it completed execution,
SQLCancel was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error (DM) The specified StatementHandle was not in an executed state.
The function was called without first calling SQLExecDirect,
SQLExecute or a catalog function.

(DM) An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

(DM) SQLExecute, SQLExecDirect, SQLBulkOperations, or
SQLSetPos was called for the StatementHandle and returned
SQL_NEED_DATA. This function was called before data was sent for
all data-at-execution parameters or columns.

(DM) SQLFetch was called for the StatementHandle after
SQLExtendedFetch was called and before SQLFreeStmt with the
SQL_CLOSE option was called.

HY013 Memory management
error

The function call could not be processed because the underlying
memory objects could not be accessed, possibly because of low
memory conditions.

HY090 Invalid string or buffer
length

The SQL_ATTR_USE_BOOKMARK statement attribute was set to
SQL_UB_VARIABLE, and column 0 was bound to a buffer whose
length was not equal to the maximum length for the bookmark for
this result set. (This length is available in the
SQL_DESC_OCTET_LENGTH field of the IRD and can be obtained by
calling SQLDescribeCol, SQLColAttribute, or SQLGetDescField.)

HY106 Fetch type out of range (DM) The value specified for the argument FetchOrientation was
invalid.

(DM) The argument FetchOrientation was SQL_FETCH_BOOKMARK,
and the SQL_ATTR_USE_BOOKMARKS statement attribute was set
to SQL_UB_OFF.

The value of the SQL_ATTR_CURSOR_TYPE statement attribute was
SQL_CURSOR_FORWARD_ONLY, and the value of argument
FetchOrientation was not SQL_FETCH_NEXT.

The value of the SQL_ATTR_CURSOR_SCROLLABLE statement
attribute was SQL_NONSCROLLABLE, and the value of argument
FetchOrientation was not SQL_FETCH_NEXT.

HY107 Row value out of range The value specified with the SQL_ATTR_CURSOR_TYPE statement
attribute was SQL_CURSOR_KEYSET_DRIVEN, but the value
specified with the SQL_ATTR_KEYSET_SIZE statement attribute was
greater than 0 and less than the value specified with the
SQL_ATTR_ROW_ARRAY_SIZE statement attribute.

HY111 Invalid bookmark value The argument FetchOrientation was SQL_FETCH_BOOKMARK, and
the bookmark pointed to by the value in the
SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute was not
valid or was a null pointer.

HYC00 Optional feature not
implemented

The driver or data source does not support the conversion specified
by the combination of the TargetType in SQLBindCol and the SQL

Oterro Engine Functions 97

Copyright © 1982-2024 R:BASE Technologies, Inc.

data type of the corresponding column.

HYT01 Connection timeout
expired

The connection timeout period expired before the data source
responded to the request. The connection timeout period is set
through SQLSetConnectAttr, SQL_ATTR_CONNECTION_TIMEOUT.

Comments

SQLFetchScroll returns a specified rowset from the result set. Rowsets can be specified by absolute or
relative position or by bookmark. SQLFetchScroll can be called only while a result set exists — that is,
after a call that creates a result set and before the cursor over that result set is closed. If any columns
are bound, it returns the data in those columns. If the application has specified a pointer to a row status
array or a buffer in which to return the number of rows fetched, SQLFetchScroll returns this information
as well. Calls to SQLFetchScroll can be mixed with calls to SQLFetch but cannot be mixed with calls to
SQLExtendedFetch.

Related Functions

Function Description

SQLBindCol Binding a buffer to a column in a result set

SQLBulkOperatio
ns

Performing bulk insert, update, or delete operations

SQLCancel Canceling statement processing

SQLDescribeCol Returning information about a column in a result set

SQLExecDirect Executing an SQL statement

SQLExecute Executing a prepared SQL statement

SQLFetch Fetching a single row or a block of data in a forward-only direction

SQLFreeStmt Closing the cursor on the statement

SQLNumResultCo
ls

Returning the number of result set columns

SQLSetPos Positioning the cursor, refreshing data in the rowset, or updating or deleting data in
the result set

SQLSetStmtAttr Setting a statement attribute

Code Example

#define ROW_ARRAY_SIZE 10

SQLUINTEGER OrderIDArray[ROW_ARRAY_SIZE], NumRowsFetched;
SQLCHAR SalesPersonArray[ROW_ARRAY_SIZE][11],
 StatusArray[ROW_ARRAY_SIZE][7];
SQLINTEGER OrderIDIndArray[ROW_ARRAY_SIZE],
 SalesPersonLenOrIndArray[ROW_ARRAY_SIZE],
 StatusLenOrIndArray[ROW_ARRAY_SIZE];
SQLUSMALLINT RowStatusArray[ROW_ARRAY_SIZE], i;
SQLRETURN rc;
SQLHSTMT hstmt;

// Set the SQL_ATTR_ROW_BIND_TYPE statement attribute to use
// column-wise binding. Declare the rowset size with the
// SQL_ATTR_ROW_ARRAY_SIZE statement attribute. Set the
// SQL_ATTR_ROW_STATUS_PTR statement attribute to point to the
// row status array. Set the SQL_ATTR_ROWS_FETCHED_PTR statement
// attribute to point to cRowsFetched.

Oterro 11 Help Manual98

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_BIND_TYPE, SQL_BIND_BY_COLUMN, 0);
SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, ROW_ARRAY_SIZE, 0);
SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_STATUS_PTR, RowStatusArray, 0);
SQLSetStmtAttr(hstmt, SQL_ATTR_ROWS_FETCHED_PTR, &NumRowsFetched, 0);

// Bind arrays to the OrderID, SalesPerson, and Status columns.
SQLBindCol(hstmt, 1, SQL_C_ULONG, OrderIDArray, 0, OrderIDIndArray);
SQLBindCol(hstmt, 2, SQL_C_CHAR, SalesPersonArray,
sizeof(SalesPersonArray[0]),
 SalesPersonLenOrIndArray);
SQLBindCol(hstmt, 3, SQL_C_CHAR, StatusArray, sizeof(StatusArray[0]),
 StatusLenOrIndArray);

// Execute a statement to retrieve rows from the Orders table.
SQLExecDirect(hstmt, "SELECT OrderID, SalesPerson, Status FROM Orders",
SQL_NTS);

// Fetch up to the rowset size number of rows at a time. Print the actual
// number of rows fetched; this number is returned in NumRowsFetched.
// Check the row status array to print only those rows successfully
// fetched. Code to check if rc equals SQL_SUCCESS_WITH_INFO or
// SQL_ERROR not shown.
while ((rc = SQLFetchScroll(hstmt,SQL_FETCH_NEXT,0)) != SQL_NO_DATA) {
 for (i = 0; i < NumRowsFetched; i++) {
 if ((RowStatusArray[i] == SQL_ROW_SUCCESS) ||
 (RowStatusArray[i] == SQL_ROW_SUCCESS_WITH_INFO)) {
 if (OrderIDIndArray[i] == SQL_NULL_DATA)
 printf(" NULL ");
 else
 printf("%d\t", OrderIDArray[i]);
 if (SalesPersonLenOrIndArray[i] == SQL_NULL_DATA)
 printf(" NULL ");
 else
 printf("%s\t", SalesPersonArray[i]);
 if (StatusLenOrIndArray[i] == SQL_NULL_DATA)
 printf(" NULL\n");
 else
 printf("%s\n", StatusArray[i]);
 }
 }
}

// Close the cursor.
SQLCloseCursor(hstmt);

4.28 SQLForeignKeys

SQLForeignKeys returns both a list of foreign keys for a specified table and a list of foreign keys in other
tables that refer to the primary key in the specified table.

Syntax

Oterro Engine Functions 99

Copyright © 1982-2024 R:BASE Technologies, Inc.

RETCODE = SQLForeignKeys (hstmt, szPkTableQualifier, cbPkTableQualifier, szPkTableOwner,

cbPkTableOwner, szPkTableName, cbPkTableName, szFkTableQualifer, cbFkTableQualifer,
szFkTableOwner, cbFkTableOwner, szFkTableName, cbFkTableName)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

String szPkTableQualifier Input The buffer containing the primary key table qualifier.

Integer cbPkTableQualifier Input The length of the primary key table qualifier.

String szPkTableOwner Input The buffer containing the primary key table-owner name.

Integer cbPkTableOwner Input The length of the primary key table owner.

String szPkTableName Input The buffer containing the primary key table name.

Integer cbPkTableName Input The length of the primary key table name.

String szFkTableQualifer Input The buffer containing the foreign key table qualifier.

Integer cbFkTableQualifer Input The length of the foreign key table qualifier.

String szFkTableOwner Input The buffer containing the foreign key owner name.

Integer cbFkTableOwner Input The length of the foreign key table owner.

String szFkTableName Input The buffer containing the foreign key table name.

Integer cbFkTableName Input The length of the foreign key table name.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Result Set

Column Name Data Type Comments
PKTABLE_QUALIFIER TEXT 18 The primary key table qualifier. The Oterro Engine returns NULL.

PKTABLE_OWNER TEXT 18 The primary key table owner. The Oterro Engine returns NULL.

PKTABLE_NAME TEXT 18 The primary key table name.

PKCOLUMN_NAME TEXT 18 The primary key column name.

FKTABLE_QUALIFIER TEXT 18 The foreign key table qualifier. The Oterro Engine returns NULL.

FKTABLE_OWNER TEXT 18 The foreign key table owner. The Oterro Engine returns NULL.

FKTABLE_NAME TEXT 18 The foreign key table name.

FKCOLUMN_NAME TEXT 18 The foreign key column name.

KEY_SEQ INTEGER The column-sequence number in key (starting with 1) for multi
column keys.

UPDATE_RULE INTEGER The action to be applied to the foreign key when the SQL
operation is UPDATE: SQL_CASCADE = 1 SQL_RESTRICT = 0

DELETE_RULE The action to be applied to the foreign key when the SQL
operation is DELETE: SQL_CASCADE = 1 SQL_RESTRICT = 0

FK_NAME TEXT 18 The foreign key name.

PF_NAME TEXT 18 The primary key name.

The lengths of text columns shown in the table are maximums; to determine the actual lengths, use the
SQLGetInfo function.

Comments

When szPkTableName contains a table name, SQLForeignKeys returns a result set containing the primary
key of the specified table and all of the foreign keys (in other tables) that refer to it.

When szFkTableName contains a table name, SQLForeignKeys returns a result set containing all of the
foreign keys in the specified table and the primary keys (in other tables) to which they refer.

Oterro 11 Help Manual100

Copyright © 1982-2024 R:BASE Technologies, Inc.

When both szPkTableName and szFkTableName contain table names, SQLForeignKeys returns the foreign
keys in the table specified in szFkTableName that refer to the primary key in the table specified in
szPkTableName.

SQLForeignKeys returns a standard result set; when the foreign keys associated with a primary key are
requested, the result set is ordered by FKTABLE_QUALIFIER, FKTABLE_OWNER, FKTABLE_NAME, and
KEY_SEQ. When the primary keys associated with a foreign key are requested, the result set is ordered
by PKTABLE_QUALIFIER, PKTABLE_OWNER, PKTABLE_NAME, and KEY_SEQ.

Related Functions

Function Description
SQLPrimaryKeys Returns the columns defined as primary keys.

SQLStatistics Returns statistics for tables and indexes.

Errors

SQLSTATE Description
01000 A driver-specific informational message. (The function returns

SQL_SUCCESS_WITH_INFO.)

08S01 The data source connection failed before the function completed processing.

24000 An invalid cursor state: A cursor is currently open on the statement handle.

IM001 The driver associated with the hstmt does not support the function.

S1000 An error has occurred that has no defined SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1009 An invalid argument value—a null pointer was passed.

S1090 An invalid string or buffer length.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLForeignKeys Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szPkTableQualifier$, ByVal
cbPkTableQualifier%, ByVal szPkTableOwner$, ByVal cbPkTableOwner%, ByVal szPkTableName$, ByVal
cbPkTableName%, ByVal
 szFkTableQualifier$, ByVal cbFkTableQualifier%, ByVal szFkTableOwner$, ByVal cbFkTableOwner%,
ByVal szFkTableName$, ByVal cbFkTableName%) As Integer

CODE:
Global colnum As Integer
Global szTableName As String * 20
Global cbTableName As Integer
Global szFirst As String * 1500
Global cbFirst As Long

Sub fkconst()
 Dim i As Integer
 Dim n As Integer
 Dim xarray1(13) As Variant
 retcode = SQLForeignKeys(hstmt&, "", 0, "", 0, "", 0, "", 0, "", 0,
szTableName, cbTableName)
 errorcheck retcode
 n = 0
 n = n + 1
 i = 1

Oterro Engine Functions 101

Copyright © 1982-2024 R:BASE Technologies, Inc.

 retcode = SQLNumResultCols(hstmt&, colnum)
 errorcheck retcode
 Do While SQLFetch(hstmt&) = SQL_SUCCESS
 Do While i <= colnum
 retcode = SQLGetData(hstmt&, i, SQL_C_CHAR, szFirst, 255,
cbFirst)
 xarray1(i) = Chop(szFirst)
 i = i + 1
 Loop
 dbstr1.Grid4.Row = n
 dbstr1.Grid4.Col = 4 'fk col
 dbstr1.Grid4.Text = xarray1(8)
 dbstr1.Grid4.Col = 5 'pk table
 dbstr1.Grid4.Text = xarray1(3)
 dbstr1.Grid4.Col = 6 'fk seq
 dbstr1.Grid4.Text = xarray1(9)
 dbstr1.Grid4.Col = 7 'fk index name
 dbstr1.Grid4.Text = xarray1(12)
 dbstr1.Grid4.Col = 8 'pk col
 dbstr1.Grid4.Text = xarray1(4)
 dbstr1.Grid4.Col = 9 'pk index name
 dbstr1.Grid4.Text = xarray1(13)
 n = n + 1
 i = 1
 Loop
 retcode = SQLFreeStmt(hstmt&, SQL_CLOSE)
End Sub

4.29 SQLFreeConnect

SQLFreeConnect frees the database connection handle. All memory associated with the connection
handle is released.

Syntax

RETCODE = SQLFreeConnect (hdbc)

Arguments

Type Argument Use Description
Long hdbc Input The database connection handle.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

When SQL_ERROR is returned, the connection handle is not released. When SQL_INVALID_HANDLE is
returned, the handle is invalid and the connection handle is not released.

Oterro 11 Help Manual102

Copyright © 1982-2024 R:BASE Technologies, Inc.

An error occurs when SQLFreeConnect is called before SQLDisconnect and the connection is not
released.

SQLFreeConnect does not validate the handles that are passed to it. Because SQLFreeConnect does not
validate handles, when you try to pass it an undefined or already freed handle, you could get
unpredictable results.

Related Functions

Function Description
SQLAllocConnect Allocates a connection handle.

SQLBrowseConnect Retrieves values required to connect to a data source.

SQLConnect Opens a connection to a database.

SQLDisconnect Closes the connection to a database.

SQLDriverConnect Prompts for information to open a connection to a database
through the ODBC Driver Manager.

Errors

SQLSTATE Description
S1000 An error has occurred that has no defined SQLSTATE—see the error

message text.

S1010 An attempt to free the connection handle prior to disconnecting has been
made.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLFreeConnect Lib "ODBC32.DLL" (ByVal hdbc&) As Integer

CODE:
Global Const xdisco = "No Database Connected"
Global Const xexit = "end"
Global dbstr As String

quit xdisco

Sub quit(xend As String) 'xend specifies whether to disconnect or exit
 retcode = SQLFreeStmt(hstmt&, SQL_DROP)
 retcode = SQLDisconnect(hdbc&)
 retcode = SQLFreeConnect(hdbc&)
 If hdbc2 <> 0 Then
 retcode = SQLDisconnect(hdbc2&)
 retcode = SQLFreeConnect(hdbc2&)
 End If
 dbstr = xdisco
 If xend = "end" Then
 retcode = SQLFreeEnv (henv&)
 End
 End If
End Sub

Oterro Engine Functions 103

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.30 SQLFreeHandle

SQLFreeHandle also replaces the ODBC 2.0 function SQLFreeStmt (with the SQL_DROP Option) for
freeing a statement handle.

This function is a generic function for freeing handles. It replaces the ODBC 2.0 functions
SQLFreeConnect (for freeing a connection handle) and SQLFreeEnv (for freeing an environment handle).
SQLFreeConnect and SQLFreeEnv are both deprecated in ODBC 3.x. SQLFreeHandle also replaces the
ODBC 2.0 function SQLFreeStmt (with the SQL_DROP Option) for freeing a statement handle. For more
information, see "Comments."

Syntax

RETCODE = SQLFreeHandle(HandleType,Handle)

Arguments

Type Argument Use Description

Integer HandleType Input The type of handle to be freed by SQLFreeHandle. Must be one of
the following values:
SQL_HANDLE_ENV
SQL_HANDLE_DBC
SQL_HANDLE_STMT
SQL_HANDLE_DESC

If HandleType is not one of these values, SQLFreeHandle returns
SQL_INVALID_HANDLE.

Long Handle Input The handle to be freed.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

If SQLFreeHandle returns SQL_ERROR, the handle is still valid.

Errors

When SQLFreeHandle returns SQL_ERROR, an associated SQLSTATE value may be obtained from the
diagnostic data structure for the handle that SQLFreeHandle tried to free but could not. The following
table lists the SQLSTATE values typically returned by SQLFreeHandle and explains each one in the
context of this function; the notation "(DM)" precedes the descriptions of SQLSTATEs returned by the
Driver Manager. The return code associated with each SQLSTATE value is SQL_ERROR, unless noted
otherwise.

SQLSTAT
E

Error Description

HY000 General error An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation error The driver was unable to allocate memory that is required to
support execution or completion of the function.

HY010 Function sequence error (DM) The HandleType argument was SQL_HANDLE_ENV, and at
least one connection was in an allocated or connected state.
SQLDisconnect and SQLFreeHandle with a HandleType of
SQL_HANDLE_DBC must be called for each connection before
calling SQLFreeHandle with a HandleType of SQL_HANDLE_ENV.

Oterro 11 Help Manual104

Copyright © 1982-2024 R:BASE Technologies, Inc.

(DM) The HandleType argument was SQL_HANDLE_DBC, and the
function was called before calling SQLDisconnect for the
connection.

(DM) The HandleType argument was SQL_HANDLE_STMT; an
asynchronously executing function was called on the statement
handle; and the function was still executing when this function
was called.

(DM) The HandleType argument was SQL_HANDLE_STMT;
SQLExecute, SQLExecDirect, SQLBulkOperations, or SQLSetPos
was called with the statement handle and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

(DM) All subsidiary handles and other resources were not
released before SQLFreeHandle was called.

HY013 Memory management error The HandleType argument was SQL_HANDLE_STMT or
SQL_HANDLE_DESC, and the function call could not be processed
because the underlying memory objects could not be accessed,
possibly because of low memory conditions.

HY017 Invalid use of an
automatically allocated
descriptor handle.

(DM) The Handle argument was set to the handle for an
automatically allocated descriptor.

HYT01 Connection timeout expired The connection timeout period expired before the data source
responded to the request. The connection timeout period is set
through SQLSetConnectAttr, SQL_ATTR_CONNECTION_TIMEOUT.

IM001 Driver does not support this
function

(DM) The HandleType argument was SQL_HANDLE_DESC, and
the driver was an ODBC 2.x driver.

(DM) The HandleType argument was SQL_HANDLE_STMT, and
the driver was not a valid ODBC driver.

Comments

SQLFreeHandle is used to free handles for environments, connections, statements, and descriptors, as
described in the following sections. For general information about handles, see Handles.

An application should not use a handle after it has been freed; the Driver Manager does not check the
validity of a handle in a function call.

Related Functions

Function Description

SQLAllocHandle Allocating a handle

SQLCancel Canceling statement processing

SQLSetCursorName Setting a cursor name

Code Example

// SQLConnect_ref.cpp
// compile with: odbc32.lib
#include <windows.h>
#include <sqlext.h>

int main() {
 SQLHENV henv;
 SQLHDBC hdbc;

Oterro Engine Functions 105

Copyright © 1982-2024 R:BASE Technologies, Inc.

 SQLHSTMT hstmt;
 SQLRETURN retcode;
 SQLPOINTER rgbValue;
 int i = 5;
 rgbValue = &i;

 SQLCHAR * OutConnStr = (SQLCHAR *)malloc(255);
 SQLSMALLINT * OutConnStrLen = (SQLSMALLINT *)malloc(255);

 // Allocate environment handle
 retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

 // Set the ODBC version environment attribute
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 retcode = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (void*)
SQL_OV_ODBC3, 0);

 // Allocate connection handle
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

 // Set login timeout to 5 seconds
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 SQLSetConnectAttr(hdbc, SQL_LOGIN_TIMEOUT, (SQLPOINTER)
(rgbValue), 0);

 // Connect to data source
 retcode = SQLConnect(hdbc, (SQLCHAR*) "NorthWind", SQL_NTS,
(SQLCHAR*) NULL, 0, NULL, 0);

 // Allocate statement handle
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
{
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 // Process data
 if (retcode == SQL_SUCCESS || retcode ==
SQL_SUCCESS_WITH_INFO) {
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 }

 SQLDisconnect(hdbc);
 }

 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 }
 }
 SQLFreeHandle(SQL_HANDLE_ENV, henv);
 }
}

Oterro 11 Help Manual106

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.31 SQLFreeEnv

SQLFreeEnv frees the environment handle. All memory associated with the handle is released.

Syntax

RETCODE = SQLFreeEnv (henv)

Arguments

Type Argument Use Description
Long henv Input The environment handle.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

When SQL_ERROR is returned, the environment handle is not released. When SQL_INVALID_HANDLE is
returned, the handle is invalid and the environment handle is not released.

All connections must be released before calling SQLFreeEnv.

SQLFreeEnv does not validate the handles that are passed to it. Because SQLFreeEnv does not validate
handles, when you try to pass it an undefined or already freed handle, you could get unpredictable
results.

Related Functions

Function Description
SQLAllocEnv Allocates an environment handle.

Errors

SQLSTATE Description
S1000 An error has occurred that has no defined SQLSTATE—see the

error message text.

S1010 An attempt to free the environment handle prior to
disconnecting and freeing all current connection handles has
been made.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLFreeEnv Lib "ODBC32.DLL" (ByVal henv&) As Integer

CODE:
Global Const xdisco = "No Database Connected"
Global Const xexit = "end"
Global dbstr As String

Oterro Engine Functions 107

Copyright © 1982-2024 R:BASE Technologies, Inc.

quit xdisco

Sub quit(xend As String) 'xend specifies whether to disconnect or exit
 retcode = SQLFreeStmt(hstmt&, SQL_DROP)
 retcode = SQLDisconnect(hdbc&)
 retcode = SQLFreeConnect(hdbc&)
 If hdbc2 <> 0 Then
 retcode = SQLDisconnect(hdbc2&)
 retcode = SQLFreeConnect(hdbc2&)
 End If
 dbstr = xdisco
 If xend = "end" Then
 retcode = SQLFreeEnv (henv&)
 End
 End If
End Sub

4.32 SQLFreeStmt

SQLFreeStmt ends processing on the statement hstmt as specified by the fOption argument.

Syntax

RETCODE = SQLFreeStmt (hstmt, fOption)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Integer fOption Input The end option; accepts one of the following:
SQL_CLOSE
SQL_DROP
SQL_UNBIND
SQL_RESET_PARAMS

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

Following is an explanation of the fOption arguments:

When SQL_CLOSE is specified, any cursor associated with the hstmt is closed and the result set
associated with the statement handle is discarded. The cursor can be reopened by reissuing
SQLExecDirect or SQLExecute with the same or different parameters.

When SQL_DROP is specified, the memory allocated for the statement handle is released and the hstmt
can't be accessed. Any open cursors are closed and the result set associated with the statement handle is
discarded. This option frees all resources associated with the hstmt.

When SQL_UNBIND is specified, all buffers for columns bound by SQLBindCol are released.

Oterro 11 Help Manual108

Copyright © 1982-2024 R:BASE Technologies, Inc.

When SQL_RESET_PARAMS is specified, all parameters bound by SQLBindParameter are released.

SQLFreeStmt does not validate the handles that are passed to it. Because SQLFreeStmt does not validate
handles, when you try to pass it an undefined or already freed handle, you could get unpredictable
results.

When using the ODBC Driver Manager, you cannot do two SQLFreeStmt commands referencing the same
statement handle in a row. Instead of doing an SQLFreeStmt (hstmt,SQL_CLOSE) and then an
SQLFreeStmt (hstmt,SQL_DROP), just do the SQLFreeStmt (hstmt,SQL_DROP). The result is the same.
Then reallocate the statement as neccessary.

Related Functions

Function Description
SQLAllocStmt Allocates a new statement handle.

SQLCancel Ends processing on a statement.

Errors

SQLSTATE Description
S1000 An error has occurred that has no defined SQLSTATE—see the error

message text.

S1001 A memory allocation failure.

S1092 An option type was out of range.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLFreeStmt Lib "ODBC32.DLL" (ByVal hstmt&, ByVal fOption%) As Integer

CODE:
Global colnum As Integer
Global bufstring As String
Global cbcol1 As Long
Global colresults As String * 5000
Global starttime As Date
Global endtime As Date
Global elapsed As Integer

Sub getall()
 Dim i As Integer
 retcode = SQLNumResultCols(hstmt, colnum)
 errorcheck retcode
 bufstring = sql1.Text
 results.AddItem UCase(bufstring)
 starttime = Time
 Do While SQLFetch(hstmt&) = SQL_SUCCESS
 i = 1
 Do While i <= colnum
 retcode = SQLGetData(hstmt&, i, SQL_C_CHAR, colresults,
5000, cbcol1)
 errorcheck retcode
 If i = 1 Then
 bufstring = Chop(colresults)
 Else

Oterro Engine Functions 109

Copyright © 1982-2024 R:BASE Technologies, Inc.

 bufstring = bufstring & "," & Chop(colresults)
 End If
 i = i + 1
 Loop
 results.AddItem bufstring
 Loop
 endtime = Time
 elapsed = DateDiff("s", starttime, endtime)
 bufstring = "Elapsed Time: " & elapsed & " seconds"
 results.AddItem bufstring
 retcode = SQLFreeStmt(hstmt&, SQL_CLOSE)
End Sub

4.33 SQLGetConnectAttr

SQLGetConnectAttr returns the current setting of a connection attribute.

Syntax

RETCODE = SQLGetConnectAttr(ConnectionHandle,Attribute,ValuePtr,BufferLength,StringLengthPtr);

Arguments

Type Argument Use Description

Long ConnectionHand
le

Input Connection handle.

Integer Attribute Input Attribute to retrieve.

Long ValuePtr Output A pointer to memory in which to return the current value of the
attribute specified by Attribute.

Integer BufferLength Input If Attribute is an ODBC-defined attribute and ValuePtr points to a
character string or a binary buffer, this argument should be the length

of *ValuePtr. If Attribute is an ODBC-defined attribute and *ValuePtr is

an integer, BufferLength is ignored. If the value in *ValuePtr is a

Unicode string (when calling SQLGetConnectAttrW), the BufferLength
argument must be an even number.

If Attribute is a driver-defined attribute, the application indicates the
nature of the attribute to the Driver Manager by setting the
BufferLength argument. BufferLength can have the following values:

If *ValuePtr is a pointer to a character string, BufferLength is the

length of the string.

If *ValuePtr is a pointer to a binary buffer, the application places the

result of the SQL_LEN_BINARY_ATTR(length) macro in BufferLength.
This places a negative value in BufferLength.

If *ValuePtr is a pointer to a value other than a character string or

binary string, BufferLength should have the value SQL_IS_POINTER.

If *ValuePtr contains a fixed-length data type, BufferLength is either

SQL_IS_INTEGER or SQL_IS_UINTEGER, as appropriate.

Integer StringLengthPtr Output A pointer to a buffer in which to return the total number of bytes
(excluding the null-termination character) available to return in

*ValuePtr. If *ValuePtr is a null pointer, no length is returned. If the

attribute value is a character string and the number of bytes available
to return is greater than BufferLength minus the length of the null-

Oterro 11 Help Manual110

Copyright © 1982-2024 R:BASE Technologies, Inc.

termination character, the data in *ValuePtr is truncated to

BufferLength minus the length of the null-termination character and is
null-terminated by the driver.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, or

SQL_INVALID_HANDLE

Errors

When SQLGetConnectAttr returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value can be obtained from the diagnostic data structure by calling SQLGetDiagRec with a HandleType of
SQL_HANDLE_DBC and a Handle of ConnectionHandle. The following table lists the SQLSTATE values
typically returned by SQLGetConnectAttr and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTAT
E

Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 String data, right
truncated

The data returned in *ValuePtr was truncated to be BufferLength
minus the length of a null-termination character. The length of the
untruncated string value is returned in *StringLengthPtr. (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection does not exist (DM) An Attribute value that required an open connection was
specified.

08S01 Communication link
failure

The communication link between the driver and the data source to
which the driver was connected failed before the function
completed processing.

HY000 General error An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned from the diagnostic data structure by the
argument MessageText in SQLGetDiagField describes the error and
its cause.

HY001 Memory allocation error The driver was unable to allocate memory that is required to
support execution or completion of the function.

HY010 Function sequence error (DM) SQLBrowseConnect was called for the ConnectionHandle and
returned SQL_NEED_DATA. This function was called before
SQLBrowseConnect returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.

HY013 Memory management
error

The function call could not be processed because the underlying
memory objects could not be accessed, possibly because of low
memory conditions.

HY090 Invalid string or buffer
length

(DM) *ValuePtr is a character string, and BufferLength was less
than zero but not equal to SQL_NTS.

HY092 Invalid attribute/option
identifier

The value specified for the argument Attribute was not valid for the
version of ODBC supported by the driver.

HYC00 Optional feature not
implemented

The value specified for the argument Attribute was a valid ODBC
connection attribute for the version of ODBC supported by the
driver, but was not supported by the driver.

HYT01 Connection timeout
expired

The connection timeout period expired before the data source
responded to the request. The connection timeout period is set
through SQLSetConnectAttr, SQL_ATTR_CONNECTION_TIMEOUT.

IM001 Driver does not support
this function

(DM) The driver that corresponds to the ConnectionHandle does
not support the function.

Comments

Oterro Engine Functions 111

Copyright © 1982-2024 R:BASE Technologies, Inc.

For general information about connection attributes, see Connection Attributes.

For a list of attributes that can be set, see SQLSetConnectAttr. Notice that if Attribute specifies an
attribute that returns a string, ValuePtr must be a pointer to a buffer for the string. The maximum length
of the returned string, including the null-termination character, will be BufferLength bytes.

Depending on the attribute, an application does not have to establish a connection before calling
SQLGetConnectAttr. However, if SQLGetConnectAttr is called and the specified attribute does not have a
default and has not been set by a prior call to SQLSetConnectAttr, SQLGetConnectAttr will return
SQL_NO_DATA.

If Attribute is SQL_ATTR_ TRACE or SQL_ATTR_ TRACEFILE, ConnectionHandle does not have to be
valid, and SQLGetConnectAttr will not return SQL_ERROR or SQL_INVALID_HANDLE if ConnectionHandle
is invalid. These attributes apply to all connections. SQLGetConnectAttr will return SQL_ERROR or
SQL_INVALID_HANDLE if another argument is invalid.

Although an application can set statement attributes by using SQLSetConnectAttr, an application cannot
use SQLGetConnectAttr to retrieve statement attribute values; it must call SQLGetStmtAttr to retrieve the
setting of statement attributes.

Both SQL_ATTR_AUTO_IPD and SQL_ATTR_CONNECTION_DEAD connection attributes can be returned
by a call to SQLGetConnectAttr but cannot be set by a call to SQLSetConnectAttr.

Related Functions

Function Description

SQLGetStmtAttr Returning the setting of a statement attribute

SQLSetConnectAttr Setting a connection attribute

SQLSetEnvAttr Setting an environment attribute

SQLSetStmtAttr Setting a statement attribute

4.34 SQLGetConnectOption

SQLGetConnectOption queries database connection options.

Syntax

RETCODE = SQLGetConnectOption (hdbc, usOption, pulParam)

Arguments

Type Argument Use Description
Long hdbc Input The database connection handle.

Integer usOption Input The information option to retrieve.

Long pulParam Output The value for usOption; it is a 32-bit integer.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Information Types

All connection options must be set before calling SQLDriverConnect. Connection options for the Oterro
Engine are as follows:

Oterro 11 Help Manual112

Copyright © 1982-2024 R:BASE Technologies, Inc.

usOption Constant Value Description
SQL_ACCESS_MODE 101 Can either be: SQL_MODE_READ_WRITE (0)

SQL_MODE_READ_ONLY (1)

SQL_AUTOCOMMIT 102 1 = AUTOCOMMIT 0 = manual commit

SQL_MICRORIM_AUTOCONVERT_MODE 1010 1 = convert on 0 = convert off

SQL_MICRORIM_AUTORECOVER_MODE 1009 1 = recover on 0 = recover off

SQL_MICRORIM_AUTOROWVER_MODE 1013 1 = on 0 = off

SQL_MICRORIM_AUTOSYNC_MODE 1011 1 = sync on 0 = sync off

SQL_MICRORIM_AUTOUPGRADE_MODE 1012 1 = upgrade on 0 = upgrade off

SQL_MICRORIM_COMPATIBILITY_MODE 1001 1 = on 0 = off

SQL_MICRORIM_FASTLOCKS_MODE 1008 1 = fastlocks on 0 = fastlocks off

SQL_MICRORIM_MAX_TRANSACTIONS 1003 A number from 1 to 255 designating the
maximum number of transactions the Oterro
database should allow.

SQL_MICRORIM_MULTIUSER_MODE 1004 1 = multi-user on 0 = multi-user off

SQL_MICRORIM_TRANSACTION_MODE 1006 1 = transactions on 0 = transactions off

SQL_MICRORIM_STATICDB_MODE 1007 1 = static on 0 = static off

Related Functions

Function Description
SQLAllocConnect Allocates a connection handle.

SQLConnect Opens a connection to a database.

SQLDriverConnect Prompts for information to open a connection to a database.

SQLSetConnectOption Sets a database connection option.

Errors

SQLSTATE Description
S1000 An error has occurred that has no defined SQLSTATE—see the error

message text.

S1001 A memory allocation failure.

S1092 An option type was out of range.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLGetConnectOption Lib "ODBC32.DLL" (ByVal hdbc&, ByVal usOption%, pulParam&)
As Integer

CODE:
Global cbcol1 As Long

Private Sub Form_Load()
 If iType = 1 Then
 conn2.check1.Enabled = False
 conn2.Check2.Enabled = False
 retcode = SQLGetConnectOption(hdbc&, SQL_MICRORIM_MULTIUSER_MODE,
cbcol1)
 errorcheck retcode
 If cbcol1 = 1 Then
 conn2.check1.Value = 1

Oterro Engine Functions 113

Copyright © 1982-2024 R:BASE Technologies, Inc.

 End If
 retcode = SQLGetConnectOption(hdbc&,
SQL_MICRORIM_TRANSACTION_MODE, cbcol1)
 errorcheck retcode
 If cbcol1 = 1 Then
 conn2.Check2.Value = 1
 End If
 Else
 conn2.check1.Value = 1
 conn2.Check2.Value = 0
 End If
End Sub

4.35 SQLGetCursorName

SQLGetCursorName retrieves the name of the cursor associated with this statement handle.

Syntax

RETCODE = SQLGetCursorName (hstmt, szCursor, cbCursorMax, pcbCursor)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

String szCursor Output The buffer containing the cursor name.

Integer cbCursorMax Input The maximum length of the cursor name buffer.

Integer pcbCursor Output The actual length of the cursor name.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

A cursor name can only be retrieved when one of the following has been done:

· A SELECT statement has been executed.
· A cursor name has been set with SQLSetCursorName.

Related Functions

Function Description
SQLExecDirect Executes an SQL statement.

SQLExecute Executes a prepared SQL statement.

SQLPrepare Prepares an SQL statement for execution.

SQLSetCursorName Sets a cursor name for a statement handle.

Errors

Oterro 11 Help Manual114

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLSTATE Description
01004 The data was truncated.

S1000 An error has occurred that has no defined
SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1015 A cursor name was not available.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLGetCursorName Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szCursor$, ByVal
cbCursorMax%, pcbCursor%) As Integer

CODE:
Global xarray1(50) As Variant
Global colresults As String * 5000
Global cbcolresults As Long
Global sqlstring As String

Private Sub ms2cursor_Click()
 Dim cblong1 As Long
 Dim cbint1 As Integer
 Dim szcur1 As String
 Dim cbcur1 As Integer
 Dim szcur2 As String * 50
 Dim cbcur2 As Integer
 Dim hstmtselect As Long
 Dim hstmtupd As Long
 'to perform a positioned update, you need to define 2 statement
handles
 retcode = SQLAllocStmt(hdbc&, hstmtselect)
 retcode = SQLAllocStmt(hdbc&, hstmtupd)
 'define a cursor name and set it
 szcur1 = "testCursor9x9" & vbNullChar
 cbcur1 = Len(Chop(szcur1))
 retcode = SQLSetStmtOption(hstmtselect, SQL_ROWSET_SIZE, 1)
 errorcheck retcode
 retcode = SQLSetCursorName(hstmtselect, szcur1, cbcur1)
 errorcheck retcode
 'perform a select to activate the cursor
 sqlstring = "select real1 from numbers" & vbNullChar
 retcode = SQLExecDirect(hstmtselect, sqlstring, SQL_NTS)
 errorcheck retcode
 'fetch the third row
 retcode = SQLExtendedFetch(hstmtselect, SQL_FETCH_NEXT, 1, cblong1,
cbint1)
 errorcheck retcode
 retcode = SQLExtendedFetch(hstmtselect, SQL_FETCH_NEXT, 1, cblong1,
cbint1)
 errorcheck retcode
 retcode = SQLExtendedFetch(hstmtselect, SQL_FETCH_NEXT, 1, cblong1,
cbint1)
 errorcheck retcode

Oterro Engine Functions 115

Copyright © 1982-2024 R:BASE Technologies, Inc.

 'get the cursor name to use with the update
 retcode = SQLGetCursorName(hstmtselect, szcur2, 18, cbcur2)
 errorcheck retcode
 'execute the update and close both statements
 sqlstring = "update numbers set real1 = 9.9 where current of "
Chop(szcur2) & vbNullChar
 retcode = SQLExecDirect(hstmtupd, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLFreeStmt(hstmtselect, SQL_CLOSE)
 retcode = SQLFreeStmt(hstmtupd, SQL_CLOSE)
 'verify the update was performed
 sqlstring = "select real1 from numbers" & vbNullChar
 retcode = SQLExecDirect(hstmtselect, sqlstring, SQL_NTS)
 errorcheck retcode
 i = 1
 Do While SQLFetch(hstmtselect) = SQL_SUCCESS
 retcode = SQLGetData(hstmtselect, 1, SQL_C_CHAR, colresults,
5000, cbcolresults)
 errorcheck retcode
 xarray1(i) = Chop(colresults)
 i = i + 1
 Loop
 view2.List1.Clear
 i = 1
 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hstmtselect, SQL_DROP)
 retcode = SQLFreeStmt(hstmtupd, SQL_DROP)
End Sub

4.36 SQLGetData

SQLGetData retrieves result data for a single column in the current row.

Syntax

RETCODE = SQLGetData (hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Integer icol Input The column number in the result data, starting at 1.

Integer fCType Input Convert to this C data type in the value buffer.

String rgbValue Output A pointer to storage for the data.

Long cbValueMax Input The maximum length of the rgbValue buffer.

Long pcbValue Output The number of bytes placed in the rgbValue buffer.

Oterro 11 Help Manual116

Copyright © 1982-2024 R:BASE Technologies, Inc.

Return Values

SQL_SUCCESS, SQL_NO_DATA_FOUND, or SQL_INVALID_HANDLE

Comments

The maximum amount of data received in a call is determined by the parameter cbValueMax. However,
numeric data types not translated to text are written to the buffer regardless of length.

The actual number of bytes available, or the number of bytes written to rgbValue is returned in the
parameter pcbValue. Character string buffers are truncated when pcbValue is greater than or equal to
cbValueMax, and the return value from SQLGetData is SQL_SUCCESS_WITH_INFO. When this occurs,
the number of bytes left awaiting retrieval is determined by pcbValue minus cbValueMax minus 1. A
future call to SQLGetData produces data that can be concatenated with the truncated data retrieved in
the previous call to SQLGetData. You must make the two calls to retrieve the whole string.

SQLFetch must be called prior to calling SQLGetData.

Related Functions

Function Description
SQLColAttributes Returns column attributes in a result set.

SQLDescribeCol Describes a column in a result set.

SQLExecDirect Executes an SQL statement.

SQLExecute Executes a prepared SQL statement.

SQLFetch Fetches one row of a result set.

SQLNumResultCols Returns the number of columns in a result set.

SQLPrepare Prepares an SQL statement for execution.

Errors

SQLSTATE Description
01004 The data was truncated (SQL_SUCCESS_WITH_INFO was

returned).

07006 The specified conversion is illegal.

22003 The numeric value is out of range: A significant truncation
would have occurred.

24000 An invalid cursor state: A cursor is currently open on the
statement handle.

S1000 An error has occurred that has no defined SQLSTATE—see
the error message text.

S1001 A memory allocation failure.

S1002 An invalid column number.

S1003 A program type is out of range: The C type was not valid.

S1009 An invalid argument value—a null pointer was passed.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLGetData Lib "ODBC32.DLL" (ByVal hstmt&, ByVal icol%, ByVal fCType%, ByVal
rgbValue$, ByVal cbValueMax&, pcbValue&) As Integer

CODE:
Global colnum As Integer

Oterro Engine Functions 117

Copyright © 1982-2024 R:BASE Technologies, Inc.

Global bufstring As String
Global cbcol1 As Long
Global colresults As String * 5000
Global starttime As Date
Global endtime As Date
Global elapsed As Integer

Sub getall()
 Dim i As Integer
 retcode = SQLNumResultCols(hstmt, colnum)
 errorcheck retcode
 bufstring = sql1.Text
 results.AddItem UCase(bufstring)
 starttime = Time
 Do While SQLFetch(hstmt&) = SQL_SUCCESS
 i = 1
 Do While i <= colnum
 retcode = SQLGetData(hstmt&, i, SQL_C_CHAR, colresults,
5000, cbcol1)
 errorcheck retcode
 If i = 1 Then
 bufstring = Chop(colresults)
 Else
 bufstring = bufstring & "," & Chop(colresults)
 End If
 i = i + 1
 Loop
 results.AddItem bufstring
 Loop
 endtime = Time
 elapsed = DateDiff("s", starttime, endtime)
 bufstring = "Elapsed Time: " & elapsed & " seconds"
 results.AddItem bufstring
 retcode = SQLFreeStmt(hstmt&, SQL_CLOSE)
End Sub

4.37 SQLGetDiagRec

SQLGetDiagRec returns the current value of the SQLSTATE field of a diagnostic record that contains
error, warning, and status information.

A connection handle must be allocated using SQLAllocHandle() before calling this function.

Syntax

RETCODE = SQLGetDiagRec(HandleType, Handle, RecNumber, *SQLState, *NativeErrorPtr,

*MessageText, BufferLength, *TextLengthPtr)

Arguments

Type Argument Use Description

Integer HandleType Input A handle-type identifier that describes the type of handle for which
diagnostics are desired. Can be SQL_HANDLE_STMT or

Oterro 11 Help Manual118

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQL_HANDLE_DBC.

Long Handle Input A handle for the diagnostic data structure, of the type indicated by
HandleType.

Integer RecNumber Input Indicates the status record from which the application seeks
information. Status records must be 1.

String SQLState Output Pointer to a buffer in which to return a 5 character SQLSTATE code
pertaining to the diagnostic record RecNumber. The first two characters
indicate the class; the next three indicate the subclass.

Integer NativeErrorPtr Output Pointer to a buffer in which to return the native error code, specific to
the data source.

String MessageText Output Pointer to a buffer in which to return the error message text. The fields
returned by SQLGetDiagRec() are contained in a text string.

Integer BufferLength Input Length (in bytes) of the MessageText buffer.

Integer TextLengthPtr Output Pointer to a buffer in which to return the total number of bytes
(excluding the number of bytes required for the null termination
character) available to return in MessageText. If the number of bytes
available to return is greater than BufferLength, then the error
message text in MessageText is truncated to BufferLength minus the
length of the null termination character.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

An application typically calls SQLGetDiagRec when a previous call to an ODBC function returns anything
other than SQL_SUCCESS.

SQLGetDiagRec returns a character string containing multiple fields of the diagnostic data structure
record.

The following SQLSTATEs can now be returned : 57011, HY024, HY092, HY000, HY012.

SQLGetDiagRec retrieves only the diagnostic information most recently associated with the handle
specified in the Handle argument. If the application calls any function, except SQLGetDiagRec, any
diagnostic information from the previous calls on the same handle is lost.

HandleType argument

Each handle type can have diagnostic information associated with it. The HandleType argument denotes
the handle type of Handle.

Diagnostics

SQLGetDiagRec() does not post error values for itself. It uses the following return values to report the
outcome of its own execution:

SQL_SUCCESS The function successfully returned diagnostic information.

SQL_SUCCESS_WITH_IN
FO

The MessageText buffer is too small to hold the requested diagnostic message.
No diagnostic records are generated. To determine that a truncation occurred,
the application must compare BufferLength to the actual number of bytes
available, which is written to StringLengthPtr.

SQL_INVALID_HANDLE The handle indicated by HandleType and Handle is not a valid handle.

SQL_ERROR One of the following situations occurred:
· RecNumber is negative or 0.
· BufferLength is less than zero.

SQL_NO_DATA RecNumber is greater than the number of diagnostic records that existed for
the handle specified in Handle. The function also returns SQL_NO_DATA for any
positive RecNumber if there are no diagnostic records for Handle.

Oterro Engine Functions 119

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.38 SQLGetFunctions

SQLGetFunctions returns information about whether the Oterro Engine supports a specific ODBC
function.

Syntax

RETCODE = SQLGetFunctions (hdbc, fFunction, pfExists)

Arguments

Type Argument Use Description
Long hdbc Input The database connection handle.

Integer fFunction Input A specific function constant, or the
constant SQL_API_ALL_FUNCTIONS.

Integer pfExists Output Returns TRUE = 1 or FALSE = 0.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Result Set

fFunction Constant Condition

SQL_API_SQLALLOCCONNECT TRUE

SQL_API_SQLALLOCENV TRUE

SQL_API_SQLALLOCSTMT TRUE

SQL_API_SQLBINDPARAMETER TRUE

SQL_API_SQLBINDCOL TRUE

SQL_API_SQLBROWSECONNECT TRUE

SQL_API_SQLCANCEL TRUE

SQL_API_SQLCOLATTRIBUTES TRUE

SQL_API_SQLCOLUMNPRIVILEGES TRUE

SQL_API_SQLCOLUMNS TRUE

SQL_API_SQLCONNECT TRUE

SQL_API_SQLDATASOURCES TRUE

SQL_API_SQLDESCRIBECOL TRUE

SQL_API_SQLDESCRIBEPARAM TRUE

SQL_API_SQLDISCONNECT TRUE

SQL_API_SQLDRIVERCONNECT TRUE

SQL_API_SQLDRIVERS TRUE

SQL_API_SQLERROR TRUE

SQL_API_SQLEXECDIRECT TRUE

SQL_API_SQLEXECUTE TRUE

SQL_API_SQLEXTENDEDFETCH TRUE

SQL_API_SQLFETCH TRUE

SQL_API_SQLFOREIGNKEYS TRUE

SQL_API_SQLFREECONNECT TRUE

SQL_API_SQLFREEENV TRUE

SQL_API_SQLFREESTMT TRUE

SQL_API_SQLGETCONNECTOPTION TRUE

SQL_API_SQLGETCURSORNAME TRUE

SQL_API_SQLGETDATA TRUE

Comments

Oterro 11 Help Manual120

Copyright © 1982-2024 R:BASE Technologies, Inc.

For SQL_API_ALL_FUNCTIONS, the storage area pointed to by pfExists must be an INTEGER array of 100
elements.

Related Functions

Function Description

SQLGetInfo Queries information about a driver or data source.

Errors

SQLSTATE Description
01000 A driver-specific informational message. (The

function returns SQL_SUCCESS_WITH_INFO.)

S1000 An error has occurred that has no defined SQLSTATE
—see the error message text.

S1001 A memory allocation failure.

S1095 An invalid fFunction value was specified.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLGetFunctions Lib "ODBC32.DLL" (ByVal hdbc&, ByVal fFunction%, pfExists%) As
Integer

CODE:
Private Sub md1func_Click()
 Dim i As Integer
 Dim msg As String
 retcode = SQLGetFunctions(hdbc&, SQL_API_SQLBROWSECONNECT, i)
 errorcheck retcode
 msg = "SQL_API_SQLBROWSECONNECT = " & i
 MsgBox msg, 64, "SQLGetFunctions"
End Sub

4.39 SQLGetStmtAttr

SQLGetStmtAttr returns the current setting of a statement attribute.

Syntax

SQLRETURN =

SQLGetStmtAttr(StatementHandle,Attribute,ValuePtr,BufferLength,StringLengthPtr)

Arguments

Type Argument Use Description

Long StatementHandl
e

Input Statement handle.

Integer Attribute Input Attribute to retrieve.

Long ValuePtr Output Pointer to a buffer in which to return the value of the attribute specified
in Attribute.

Integer BufferLength Input If Attribute is an ODBC-defined attribute and ValuePtr points to a
character string or a binary buffer, this argument should be the length

Oterro Engine Functions 121

Copyright © 1982-2024 R:BASE Technologies, Inc.

of *ValuePtr.

If Attribute is an ODBC-defined attribute and *ValuePtr is an integer,
BufferLength is ignored. If the value returned in *ValuePtr is a Unicode
string (when calling SQLGetStmtAttrW), the BufferLength argument
must be an even number.

If Attribute is a driver-defined attribute, the application indicates the
nature of the attribute to the Driver Manager by setting the
BufferLength argument. BufferLength can have the following values:

If *ValuePtr is a pointer to a character string, then BufferLength is the
length of the string or SQL_NTS.

If *ValuePtr is a pointer to a binary buffer, then the application places
the result of the SQL_LEN_BINARY_ATTR(length) macro in
BufferLength. This places a negative value in BufferLength.

If *ValuePtr is a pointer to a value other than a character string or
binary string, then BufferLength should have the value
SQL_IS_POINTER.

If *ValuePtr is contains a fixed-length data type, then BufferLength is
either SQL_IS_INTEGER or SQL_IS_UINTEGER, as appropriate.

Integer StringLengthPtr Output A pointer to a buffer in which to return the total number of bytes
(excluding the null-termination character) available to return in
*ValuePtr. If ValuePtr is a null pointer, no length is returned. If the
attribute value is a character string, and the number of bytes available
to return is greater than or equal to BufferLength, the data in *ValuePtr
is truncated to BufferLength minus the length of a null-termination
character and is null-terminated by the driver.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Errors

When SQLGetStmtAttr returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLGetDiagRec with a HandleType of SQL_HANDLE_STMT and a Handle
of StatementHandle. The following table lists the SQLSTATE values commonly returned by
SQLGetStmtAttr and explains each one in the context of this function; the notation "(DM)" precedes the
descriptions of SQLSTATEs returned by the Driver Manager. The return code associated with each
SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATEError Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 String data, right
truncated

The data returned in *ValuePtr was truncated to be BufferLength
minus the length of a null-termination character. The length of the
untruncated string value is returned in *StringLengthPtr. (Function
returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The argument Attribute was SQL_ATTR_ROW_NUMBER and the
cursor was not open, or the cursor was positioned before the start
of the result set or after the end of the result set.

HY000 General error An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec in the argument
MessageText describes the error and its cause.

HY001 Memory allocation error The driver was unable to allocate memory required to support
execution or completion of the function.

Oterro 11 Help Manual122

Copyright © 1982-2024 R:BASE Technologies, Inc.

HY010 Function sequence error (DM) An asynchronously executing function was called for the
StatementHandle and was still executing when this function was
called.(DM) SQLExecute, SQLExecDirect, SQLBulkOperations, or
SQLSetPos was called for the StatementHandle and returned
SQL_NEED_DATA. This function was called before data was sent for
all data-at-execution parameters or columns.

HY013 Memory management
error

The function call could not be processed because the underlying
memory objects could not be accessed, possibly because of low
memory conditions.

HY090 Invalid string or buffer
length

(DM) *ValuePtr is a character string, and BufferLength was less
than zero, but not equal to SQL_NTS.

HY092 Invalid attribute/option
identifier

The value specified for the argument Attribute was not valid for the
version of ODBC supported by the driver.

HY109 Invalid cursor position The Attribute argument was SQL_ATTR_ROW_NUMBER and the row
had been deleted or could not be fetched.

HYC00 Optional feature not
implemented

The value specified for the argument Attribute was a valid ODBC
statement attribute for the version of ODBC supported by the
driver, but was not supported by the driver.

HYT01 Connection timeout
expired

The connection timeout period expired before the data source
responded to the request. The connection timeout period is set
through SQLSetConnectAttr, SQL_ATTR_CONNECTION_TIMEOUT.

IM001 Driver does not support
this function

(DM) The driver corresponding to the StatementHandle does not
support the function.

Comments

For general information about statement attributes, see Statement Attributes.

A call to SQLGetStmtAttr returns in *ValuePtr the value of the statement attribute specified in Attribute.
That value can either be a 32-bit value or a null-terminated character string. If the value is a null-
terminated string, the application specifies the maximum length of that string in the BufferLength
argument, and the driver returns the length of that string in the *StringLengthPtr buffer. If the value is a
32-bit value, the BufferLength and StringLengthPtr arguments are not used.

To allow applications calling SQLGetStmtAttr to work with ODBC 2.x drivers, a call to SQLGetStmtAttr is
mapped in the Driver Manager to SQLGetStmtOption.

The following statement attributes are read-only, so can be retrieved by SQLGetStmtAttr, but not set by
SQLSetStmtAttr:

· SQL_ATTR_IMP_PARAM_DESC
· SQL_ATTR_IMP_ROW_DESC
· SQL_ATTR_ROW_NUMBER

For a list of attributes that can be set and retrieved, see SQLSetStmtAttr.

Related Functions

Function Description

SQLGetConnectAttr Returning the setting of a connection attribute

SQLSetConnectAttr Setting a connection attribute

SQLSetStmtAttr Setting a statement attribute

4.40 SQLGetInfo

SQLGetInfo returns general information about the Oterro Engine and the database specified by hdbc.

Syntax

Oterro Engine Functions 123

Copyright © 1982-2024 R:BASE Technologies, Inc.

RETCODE=SQLGetInfo(hdbc, fInfoType, rgbInfoValue, cbInfoValueMax, pcbInfoValue)

Arguments

Type Argument Use Description
Long hdbc Input The database connection handle.

Integer fInfoType Input The type of information.

String rgbInfoValue Output The buffer to contain information.

Integer cbInfoValueMax Input The length of the rgbInfoValue buffer.

Integer pcbInfoValue Output The number of bytes placed in the
rgbInfoValue buffer.

Return Values

SQL_ERROR, SQL_SUCCESS, or SQL_INVALID_HANDLE

Information Types

fInfoType Constant Value Description

SQL_ACCESSIBLE_PROCEDURE 20 A character string that returns "Y" or "N" depending on
whether a user can access all procedures listed by a
call to SQLProcedures. The Oterro Engine returns "Y".

SQL_ACCESSIBLE_TABLES 19 A character string: "Y", if it is guaranteed that any
tables produced by a call to SQLTables will be
accessible by making the call. The Oterro Engine
returns "N".

SQL_ACTIVE_CONNECTIONS 0 A 16-bit integer specifying number of active
connections possible on this driver (0 signifies no limit
or the limit is not known). The Oterro Engine returns 0.

SQL_ACTIVE_STATEMENTS 1 A 16-bit integer specifying number of active
statements possible on this driver (0 signifies no limit
or the limit is not known). The Oterro Engine returns 0.

SQL_ALTER_TABLE 81 A 32-bit bitmask enumerating the clauses supported by
the data source in the ALTER TABLE command. The
Oterro Engine returns the following:
SQL_AT_ADD_COLUMN SQL_AT_DROP_COLUMN

SQL_BOOKMARK_PERSISTENCE 139 Indicates whether bookmarks persist through
operations. The Oterro Engine returns the following:
SQL_BP_DELETE SQL_BP_SCROLL SQL_BP_UPDATE

SQL_COLUMN_ALIAS 82 A character string indicating whether the data source
supports column aliases. The Oterro Engine returns
"N".

SQL_CONCAT_NULL_BEHAVIOR 22 A 16-bit integer denoting the results of concatenating a
null with a value. When the value is returned, the
driver returns 1. The driver returns 0 when a NULL is
returned. The Oterro Engine returns 1.

SQL_CONVERT_FUNCTIONS 48 A 32-bit bitmask enumerating conversion functions
supported by the driver. The Oterro Engine returns 0.

SQL_CONVERT_BIGINT
SQL_CONVERT_BINARY
SQL_CONVERT_BIT
SQL_CONVERT_CHAR
SQL_CONVERT_DATE
SQL_CONVERT_DECIMAL
SQL_CONVERT_DOUBLE
SQL_CONVERT_FLOAT
SQL_CONVERT_INTEGER
SQL_CONVERT_LONGVARCHAR

53
54
55
56
57
58
59
60
61
62

A 32-bit bitmask indicating a set of conversions
allowed for the data type named in the fInfotype. If the
bitmask equals zero, conversions are not supported,
including conversion to the same data type. The Oterro
Engine returns 0.

Oterro 11 Help Manual124

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQL_CONVERT_NUMERIC
SQL_CONVERT_REAL
SQL_CONVERT_SMALLINT
SQL_CONVERT_TIME
SQL_CONVERT_TIMESTAMP
SQL_CONVERT_TINYINT
SQL_CONVERT_VARBINARY
SQL_CONVERT_VARCHAR
SQL_CONVERT_LONGVARBINARY

63
64
65
66
67
68
69
70
71

SQL_CORRELATION_NAME 74 A 16-bit integer denoting whether table correlation
names are supported. The Oterro Engine returns
SQL_CN_DIFFERENT, the correlation names must be
different from the table names.

SQL_CURSOR_COMMIT_BEHAVIOR 23 A 16-bit integer denoting the behavior of cursors when
a commit instruction is executed. 0 Close and delete
cursors, 1 Close cursors, 2 Preserve cursors at their
present position. The Oterro Engine returns 1.

SQL_CURSOR_ROLLBACK_BEHAVIOR 24 The operation is ROLLBACK, the results are the same
as option 23.

SQL_DATA_SOURCE_NAME 2 A string containing the drive, path, and name of the
currently connected database.

SQL_DATA_SOURCE_READ_ONLY 25 The driver returns a "Y" if the database is connected in
a read-only mode, or an "N" if not.

SQL_DATABASE_NAME 16 A string containing the drive, path, and name of the
currently connected database.

SQL_DBMS_NAME 17 A string containing the name of the DBMS upon which
the driver is running. The driver returns Oterro.

SQL_DBMS_VER 18 A string containing the version of the DBMS upon which
the driver is running.

SQL_DEFAULT_TXN_ISOLATION 26 The level of transaction isolation provided by the data
source. The Oterro Engine returns
SQL_TXN_REPEATABLE_READ, since changes are not
seen by any other users until they are committed.

SQL_DRIVER_HDBC 3 The actual HDBC implemented by the ODBC Driver
Manager.

SQL_DRIVER_HENV 4 The actual HENV implemented by the ODBC Driver
Manager.

SQL_DRIVER_HLIB 76 The actual library handle returned to the ODBC Driver
Manager when it loaded the Oterro DLL.

SQL_DRIVER_HSTMT 5 The actual HSTMT implemented by the ODBC Driver
Manager.

SQL_DRIVER_NAME 6 A string containing the name of the driver DLL.

SQL_DRIVER_ODBC_VER 77 The ODBC version supported by the driver.

SQL_DRIVER_VER 7 The driver's version string.

SQL_EXPRESSIONS_IN_ORDERBY 27 A "Y" is returned if the data source allows expressions
in ORDER BY clauses. The Oterro Engine returns "N".

SQL_FETCH_DIRECTION 8 A 32-bit bitmask describing the direction in which
fetches move. The Oterro Engine returns the following:
 SQL_FD_FETCH_NEXT SQL_FD_FETCH_FIRST
SQL_FD_FETCH_LAST SQL_FD_FETCH_PRIOR
SQL_FD_FETCH_ABSOLUTE SQL_FD_FETCH_RELATIVE
SQL_FD_FETCH_BOOKMARK

SQL_FILE_USAGE 78 A 16-bit integer indicating how database files are
handled. The Oterro Engine returns
SQL_FILE_QUALIFIER, each file is a complete
database.

Related Functions

Function Description

SQLGetFunctions Returns information about whether the Oterro Engine supports a function.

Oterro Engine Functions 125

Copyright © 1982-2024 R:BASE Technologies, Inc.

Errors

SQLSTATE Description

01004 The data was truncated.

08003 No database has been connected.

22003 The numeric value is out of range: A significant truncation would have occurred.

S1000 An error has occurred that has no defined SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

S1096 An information type was out of range: fInfoType was invalid.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLGetInfo Lib "ODBC32.DLL" (ByVal hdbc&, ByVal fInfoType%, ByVal rgbInfoValue$,
ByVal cbInfoValueMax%, pcbInfoValue%) As Integer

CODE:
Global szConnectOut As String * 512
Global cbConnectOut As Integer
Global dbstr As String
Global dbdir As String

Private Sub fdrvconn_Click()
 Dim i As Integer
 retcode = SQLAllocEnv(henv&)
 retcode = SQLAllocConnect(henv&, hdbc&)
 errorcheck retcode
 retcode = SQLDriverConnect(hdbc&, hwnd&, dbstr, SQL_NTS, szConnectOut,
255, cbConnectOut, SQL_DRIVER_COMPLETE)
 If retcode <> 0 Then
 errorcheck retcode
 GoTo lend
 End If
 'get the database path
 retcode = SQLGetInfo(hdbc&, SQL_DATABASE_NAME, szConnectOut, 512,
cbConnectOut)
 errorcheck retcode
 dbstr = Chop(szConnectOut)
 i = InStr(dbstr, "\")
 dbdir = Left$(dbstr, i)
 Do While i <> 0
 i = InStr(i + 1, dbstr, "\")
 If i <> 0 Then
 dbdir = Left$(dbstr, i)
 End If
 Loop
 retcode = SQLAllocStmt(hdbc&, hstmt&)
 errorcheck retcode
lend:
End Sub

Oterro 11 Help Manual126

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.41 SQLGetStmtOption

SQLGetStmtOption returns the current setting of a statement option.

Syntax

RETCODE = SQLGetStmtOption (hstmt, sSQLType, pvParam)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Integer sSQLType Input The information option to retrieve.

Long pvParam Output The value for sSQLType; it is a 32-bit integer
or a pointer to a NULL terminated string.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Information Types

Statement options that are supported by the Oterro Engine:

sSQLType Constant Value Return Codes
SQL_ASYNC_ENABLE 4 Specifies whether a statement is executed asyncronously.

SQL_BIND_TYPE 5 Specifies the binding orientation.

SQL_CURSOR_TYPE 6 May be one of the following: SQL_CURSOR_FORWARD_ONLY
= 0 SQL_CURSOR_KEYSET_DRIVEN = 1
SQL_CURSOR_STATIC = 2 SQL_CURSOR_DYNAMIC = 3

SQL_CONCURRENCY 7 SQL_CONCUR_LOCK = 2 SQL_CONCUR_READ_ONLY = 1
SQL_CONCUR_ROWVER = 3 SQL_CONCUR_VALUES = 4

SQL_GET_BOOKMARK 21 The bookmark for the current row.

SQL_KEYSET_SIZE 8 Numbers of rows in a KEYSET.

SQL_MAX_LENGTH 3 The maximum length of data from a text column.

SQL_MAX_ROWS 1 The maximum number of rows to be returned.

SQL_NOSCAN 2 Specifies whether SQL strings are scanned for escape
clauses.

SQL_QUERY_TIMEOUT 0 Number of seconds before timing out on an SQL statement.

SQL_RETRIEVE_DATA 15 Specifies whether an SQLExtendedFetch retrieves data after
positioning.

SQL_ROW_NUMBER 18 The number of the current row in the result set.

SQL_ROWSET_SIZE 9 Number of rows returned.

SQL_SIMULATE_CURSOR 10 Specifies whether positioned update and delete affect only
one row.

Related Functions

Function Description
SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLSetStmtOption Sets options for a statement handle.

Errors

Oterro Engine Functions 127

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLSTATE Description
01000 A driver-specific informational message. (The function

returns SQL_SUCCESS_WITH_INFO.)

24000 An invalid cursor state: A cursor is currently open on the
statement handle.

IM001 The driver associated with the hstmt does not support
the function.

S1000 An error has occurred that has no defined SQLSTATE—
see the error message text.

S1001 A memory allocation failure.

S1092 An option type was out of range.

S1C00 The driver or data source does not support the specified
type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLGetStmtOption Lib "ODBC32.DLL" (ByVal hstmt&, ByVal sSQLType%, pvParam&) As
Integer

CODE:
Global sqlstring As String

Private Sub ms2extfetch_Click()
 Dim cblong1 As Long
 Dim cbint1 As Integer
 Dim i As Integer
 Dim n As Integer
 sqlstring = "select int1,real1,doub1 from numbers" & vbNullChar
 retcode = SQLPrepare(hStmt&, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLExecute(hStmt&)
 errorcheck retcode
 retcode = SQLSetStmtOption(hStmt&, SQL_CURSOR_TYPE,
SQL_CURSOR_DYNAMIC)
 retcode = SQLGetStmtOption(hStmt&, SQL_CURSOR_TYPE, cblong1)
 xarray1(1) = "cursor type = " & cblong1
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_FIRST, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(2) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_LAST, 1, cblong1, cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(3) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_PRIOR, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(4) = Chop(colresults)
 view2.List1.Clear
 i = 1
 n = 1

Oterro 11 Help Manual128

Copyright © 1982-2024 R:BASE Technologies, Inc.

 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.42 SQLGetTypeInfo

SQLGetTypeInfo retrieves information about the data types available in the database to which you are
connected.

Syntax

RETCODE = SQLGetTypeInfo (hstmt, fSqlType)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Integer fSqlType Input The ODBC data type, or SQL_ALL_TYPES
to return information about all data types.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Information Types

Valid SQL data types for the Oterro Engine are as follows:

Constant Value Oterro Data Types Value
SQL_BINARY -2 BIT 12

SQL_CHAR 1 TEXT 3

SQL_CURRENCY -16 CURRENCY 6

SQL_DATE 9 DATE 4

SQL_DECIMAL 3 NUMERIC 9

SQL_DOUBLE 8 DOUBLE 7

SQL_FLOAT 6 DOUBLE 7

SQL_INTEGER 4 INTEGER 1

SQL_LONGVARBINARY -4 VARBIT 14

SQL_LONGVARCHAR -1 VARCHAR 11

SQL_NUMERIC 2 NUMERIC 9

SQL_REAL 7 REAL 2

SQL_SMALLINT 5 INTEGER 1

SQL_TIME 10 TIME 5

SQL_TIMESTAMP 11 DATETIME 10

SQL_VARBINARY -3 BITNOTE 13

SQL_VARCHAR 12 NOTE 8

Result Set

Oterro Engine Functions 129

Copyright © 1982-2024 R:BASE Technologies, Inc.

Column Name Data Type Comments
TYPE_NAME TEXT 8 The textual name of the ODBC data type,

matches the Oterro database data type name.

DATA_TYPE INTEGER The integer number representing the
corresponding Oterro database data type.

PRECISION INTEGER The maximum length allowed for the ODBC data
type.

LITERAL_PREFIX TEXT 1 The quote prefix character, for example ' (single
quote), or NULL.

LITERAL_SUFFIX TEXT 1 The quote suffix character, for example ' (single
quote), or NULL.

CREATE_PARAMS NOTE The parameters required for CREATE, if any,
otherwise NULL.

NULLABLE INTEGER Whether the data type accepts a NULL value: 0
= SQL_NO_NULLS if the data type does not
accept NULL values 1 = SQL_NULLABLE if the
data type accepts NULL values 2 =
SQL_NULLABLE_UNKNOWN if it is not known
whether the data type accepts NULL values The
Oterro Engine returns
SQL_NULLABLE_UNKNOWN.

CASE_SENSITIVE INTEGER Whether the data type allows case sensitivity: 1
if the data type can be case sensitive 0 if the
data type cannot be case sensitive

SEARCHABLE INTEGER How the data type is used in a WHERE clause: 0
= SQL_UNSEARCHABLE if the data type cannot
be used in a WHERE clause 1 =
SQL_LIKE_ONLY if the data type can be used in
a WHERE clause only with the LIKE predicate 2
= SQL_ALL_EXCEPT_LIKE if the data type can
be used in a WHERE clause with all comparison
operators except LIKE 3 = SQL_SEARCHABLE if
the data type can be used in a WHERE clause
with any comparison operator The Oterro
Engine returns either 2 or 3.

UNSIGNED_ATTRIBUTE INTEGER 1 if the data type is unsigned 0 if the data type
is signed NULL is returned for non-numeric data
types

MONEY INTEGER Whether the data type is a money data type: 1
if it is a money data type 0 if it is not a money
data type Oterro database currency data type
returns 1

AUTO_INCREMENT INTEGER Whether the data type is auto-incrementing: 1
if ODBC autonumber 0 if not ODBC autonumber
 The Oterro Engine returns 0. Oterro database
autonumbering is different from ODBC
autonumbering.

LOCAL_TYPE_NAME TEXT 18 The localized version of the data source-
dependent name of the data type. This is always
NULL for the Oterro Engine.

MINIMUM_SCALE INTEGER The minimum scale for the specified data type.

MAXIMUM_SCALE INTEGER The maximum scale for the specified data type.

Related Functions

Function Description
SQLColAttributes Returns column attributes in a result set.

SQLDescribeCol Describes a column in a result set.

Errors

Oterro 11 Help Manual130

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLSTATE Description
24000 An invalid cursor state: A cursor is currently open

on the statement handle.

S1000 An error has occurred that has no defined
SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1004 An SQL data type is out of range: An invalid
fSqlType was specified.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLGetTypeInfo Lib "ODBC32.DLL" (ByVal hstmt&, ByVal fSqlType%) As Integer

CODE:
Global colresults As String * 5000
Global cbcolresults As Long
Global colnum As Integer

Private Sub mdb1type_Click()
 retcode = SQLGetTypeInfo(hStmt&, SQL_ALL_TYPES)
 errorcheck retcode
 loadtest
End Sub

Sub loadtest()
 Dim i As Integer
 Dim cblong1 As Long
 Dim cbint1 As Integer
 i = 0
 retcode = SQLNumResultCols(hStmt&, colnum)
 errorcheck retcode
 i = 1
 Do While SQLFetch(hStmt&) = SQL_SUCCESS
 Do While i <= colnum
 retcode = SQLGetData(hStmt&, i, SQL_C_CHAR, colresults,
5000, cbcolresults)
 view1.text1.Text = view1.text1.Text & vbCrLf & "Col" & i &
": " Chop(colresults)
 i = i + 1
 Loop
 i = 1
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.43 SQLMoreResults

Note: This function is normally used in conjunction with SQLSetPos. Since Visual Basic does not support
SQLSetPos, this function is included here with the syntax for using the C or C++ programming language.

Oterro Engine Functions 131

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLMoreResults determines if there are more results available on an hstmt containing SELECT, UPDATE,
INSERT, or DELETE statements and initializes processing for those results.

Syntax

RETCODE PASCAL SQLMoreResults (hstmt)

Arguments

Type Argument Use Description

HSTMT hstmt Input The statement handle.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_NO_DATA_FOUND, SQL_ERROR, or SQL_INVALID_HANDLE.

Comments

If another result set or count is available, SQLMoreResults returns SQL_SUCCESS and initializes the
result set or count for more processing.

If all results have been processed, SQLMoreResults returns SQL_NO_DATA_FOUND.

4.44 SQLNativeSql

SQLNativeSql returns the SQL string as translated by the driver.

Syntax

RETCODE = SQLNativeSql(hdbc, pucSQLStr, lSQLStrLen, pucSQLStrOut, lSQLStrOutMax,

plSQLStrOut)

Arguments

Type Argument Use Description

Long hdbc Input The database connection handle.

String pucSQLStr Input The SQL string to be translated.

Long lSQLStrLen Input The length of the text string.

String pucSQLStrOut Output Pointer to storage for the translated string.

Long lSQLStrOutMax Input Maximum length of the pucSQLStrOut buffer.

Long plSQLStrOut Output The total number of bytes available to return.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Errors

SQLSTATE Description
01000 A driver-specific informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

Oterro 11 Help Manual132

Copyright © 1982-2024 R:BASE Technologies, Inc.

01004 The data was truncated. (SQL_SUCCESS_WITH_INFO was returned.)

08003 No database has been connected.

37000 A syntax error or access violation.

IM001 The driver does not support this function.

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1009 An invalid argument value—a null pointer was passed.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLNativeSql Lib "ODBC32.DLL" (ByVal hdbc&, ByVal pucSQLStr$, ByVal lSQLStrLen&,
ByVal pucSQLStrOut$, ByVal lSQLStrOutMax&, plSQLStrOut&) As Integer

CODE:
Private Sub ms2native_Click()
 Dim sqlstring as String
 Dim cblong1 As Long
 Dim nativesql As String * 512
 sqlstring = "SELECT * FROM numbers" & vbNullChar
 retcode = SQLNativeSql(hdbc&, sqlstring, SQL_NTS, nativesql, 512,
cblong1)
 errorcheck retcode
 bufstring = InputBox(sqlstring, "SQLNativeSql", nativesql)
 retcode = SQLCancel(hStmt&)
End Sub

4.45 SQLNumParams

Note: This function is normally used in conjunction with SQLBindParameter. Since Visual Basic does not
support SQLBindParameter, this function is included here with the syntax for using the C or C++
programming language.

SQLNumParams returns the number of parameters in an SQL statement.

Syntax

RETCODE = SQLNumParams (hstmt, psNumParams)

Arguments

Type Argument Use Description
HSTMT hstmt Input The statement handle.

SWORD FAR* psNumParams Output The number of parameters in the statement.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or

SQL_INVALID_HANDLE

Oterro Engine Functions 133

Copyright © 1982-2024 R:BASE Technologies, Inc.

Comments

SQLNumParams can only be called after SQLPrepare has been called.

If the statement associated with hstmt does not contain parameters, SQLNumParams sets psNumParams
to 0.

4.46 SQLNumResultCols

SQLNumResultCols sets the value of the argument pcCol to the number of columns in the result set
associated with the statement handle hstmt.

Syntax

RETCODE = SQLNumResultCols (hstmt, pcCol)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Integer pcCol Output The number of columns in the result set.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

The argument pcCol is set to zero when the hstmt is associated with a statement that does not return a
result set, for example, an UPDATE or INSERT command.

Related Functions

Function Description
SQLColAttributes Returns column attributes in a result set.

SQLDescribeCol Describes a column in a result set.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLGetData Gets result data for a column in a result set.

Errors

SQLSTATE Description
S1000 An error has occurred that has no defined SQLSTATE—see

the error message text.

S1001 A memory allocation failure.

S1002 An invalid column number.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLNumResultCols Lib "ODBC32.DLL" (ByVal hstmt&, pcCol%) As Integer

Oterro 11 Help Manual134

Copyright © 1982-2024 R:BASE Technologies, Inc.

CODE:
Global colnum As Integer
Global bufstring As String
Global cbcol1 As Long
Global colresults As String * 5000
Global starttime As Date
Global endtime As Date
Global elapsed As Integer

Sub getall()
 Dim i As Integer
 retcode = SQLNumResultCols(hstmt, colnum)
 errorcheck retcode
 bufstring = sql1.Text
 results.AddItem UCase(bufstring)
 starttime = Time
 Do While SQLFetch(hstmt&) = SQL_SUCCESS
 i = 1
 Do While i <= colnum
 retcode = SQLGetData(hstmt&, i, SQL_C_CHAR, colresults,
5000, cbcol1)
 errorcheck retcode
 If i = 1 Then
 bufstring = Chop(colresults)
 Else
 bufstring = bufstring & "," & Chop(colresults)
 End If
 i = i + 1
 Loop
 results.AddItem bufstring
 Loop
 endtime = Time
 elapsed = DateDiff("s", starttime, endtime)
 bufstring = "Elapsed Time: " & elapsed & " seconds"
 results.AddItem bufstring
 retcode = SQLFreeStmt(hstmt&, SQL_CLOSE)
End Sub

4.47 SQLParamOptions

Note: This function is normally used in conjunction with SQLBindParameter. Since Visual Basic does not
support SQLBindParameter, this function is included here with the syntax for using the C or C++
programming language.

SQLParamOptions allows an application to specify multiple values for the set of parameters assigned by
SQLBindParameter.

Syntax

RETCODE PASCAL SQLParamOptions (hstmt, ulSetSize, pulRow)

Oterro Engine Functions 135

Copyright © 1982-2024 R:BASE Technologies, Inc.

Arguments

Type Argument Use Description
HSTMT hstmt Input The statement handle.

UDWORD ulSetSize Input The number of values for each parameter.

UDWORD FAR * pulRow Input A pointer to storage for the current row number.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

If SQLExecute or SQLExecDirect returns an error when trying to execute a parameterized query, the
value in pulRow returns which row of parameters failed.

4.48 SQLPrepare

SQLPrepare prepares the statement that will be executed later by the function SQLExecute.

Syntax

RETCODE = SQLPrepare (hstmt, szSqlStr, cbSqlStr)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

String szSqlStr Input The SQL string.

Long cbSqlStr Input The length of the SQL statement.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

For a list of the available Oterro database commands, see "How to Use the Oterro Engine".

Related Functions

Function Description
SQLAllocStmt Allocates a new statement handle.

SQLExecDirect Executes an SQL statement.

SQLExecute Executes a prepared SQL statement.

SQLGetCursorName Gets the name of the cursor associated with a statement handle.

SQLGetData Gets result data for a column in a result set.

SQLSetCursorName Sets a cursor name for a statement handle.

Errors

Oterro 11 Help Manual136

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLSTATE Description
S1000 An error has occurred that has no defined SQLSTATE—see the

error message text.

S1001 A memory allocation failure.

S1009 An invalid argument value—a null pointer was passed.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLPrepare Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szSqlStr$, ByVal cbSqlStr&) As
Integer

CODE:
Global sqlstring As String

Private Sub ms2extfetch_Click()
 Dim cblong1 As Long
 Dim cbint1 As Integer
 Dim i As Integer
 Dim n As Integer
 sqlstring = "select int1,real1,doub1 from numbers" & vbNullChar
 retcode = SQLPrepare(hStmt&, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLExecute(hStmt&)
 errorcheck retcode
 retcode = SQLSetStmtOption(hStmt&, SQL_CURSOR_TYPE,
SQL_CURSOR_DYNAMIC)
 retcode = SQLGetStmtOption(hStmt&, SQL_CURSOR_TYPE, cblong1)
 xarray1(1) = "cursor type = " & cblong1
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_FIRST, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(2) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_LAST, 1, cblong1, cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(3) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_PRIOR, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(4) = Chop(colresults)
 view2.List1.Clear
 i = 1
 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

Oterro Engine Functions 137

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.49 SQLPrimaryKeys

SQLPrimaryKeys returns the primary key column(s) for a given table.

Syntax

RETCODE = SQLPrimaryKeys (hstmt, szPkTableQualifier, cbPkTableQualifier, szPkTableOwner,

cbPkTableOwner, szPkTableName, cbPkTableName)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

String szPkTableQualifier Input The buffer containing the table qualifier.

Integer cbPkTableQualifier Input The length of the table qualifier.

String szPkTableOwner Input The buffer containing the table-owner name.

Integer cbPkTableOwner Input The length of the table-owner name.

String szPkTableName Input The buffer containing the table name.

integer cbPkTableName Input The length of the table name.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Result Set

Column Name Data Type Comments
TABLE_QUALIFIER TEXT 18 The primary key table qualifier. The Oterro Engine

returns NULL.

TABLE_OWNER TEXT 18 The primary key table owner. The Oterro Engine
returns NULL.

TABLE_NAME TEXT 18 The primary key table name.

COLUMN_NAME TEXT 18 The primary key column name.

KEY_SEQ INTEGER The column-sequence number in the key (starting
with 1).

PK_NAME TEXT 18 The primary key name.

The lengths of text columns shown in the table are maximums; to determine the actual lengths, use the
SQLGetInfo function.

Comments

One row is returned for each column defined as a primary key.

Related Functions

Function Description
SQLForeignKeys Returns the columns defined as foreign keys.

SQLSpecialColumns Returns information about a set of columns.

SQLStatistics Returns statistics for tables and indexes.

Oterro 11 Help Manual138

Copyright © 1982-2024 R:BASE Technologies, Inc.

Errors

SQLSTATE Description
01000 A driver-specific informational message. (The function returns

SQL_SUCCESS_WITH_INFO.)

08S01 The data source connection failed before the function completed
processing.

24000 An invalid cursor state: A cursor is currently open on the statement
handle.

IM001 The driver associated with the hstmt does not support the function.

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLPrimaryKeys Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szPkTableQualifier$, ByVal
cbPkTableQualifier%, ByVal szPkTableOwner$, ByVal cbPkTableOwner%, ByVal szPkTableName$, ByVal
cbPkTableName%) As Integer

CODE:
Global colnum As Integer
Global szTableName As String * 20
Global cbTableName As Integer
Global szFirst As String * 1500
Global cbFirst As Long

Sub pkconstr()
 Static xnum As Integer
 retcode = SQLPrimaryKeys(hstmt&, "", 0, "", 0, szTableName,
cbTableName)
 errorcheck retcode
 xnum = 1
 load3grid xnum
End Sub

Sub load3grid(xnum As Integer)
 Dim i As Integer
 Dim n As Integer
 n = xnum
 i = 1
 retcode = SQLNumResultCols(hstmt&, colnum)
 errorcheck retcode
 Do While SQLFetch(hstmt&) = SQL_SUCCESS
 dbstr1.Grid3.Row = n
 Do While i <= colnum
 retcode = SQLGetData(hstmt&, i, SQL_C_CHAR, szFirst, 255,
cbFirst)
 dbstr1.Grid3.Col = i
 dbstr1.Grid3.Text = Chop(szFirst)
 i = i + 1
 Loop

Oterro Engine Functions 139

Copyright © 1982-2024 R:BASE Technologies, Inc.

 n = n + 1
 i = 1
 Loop
 xnum = n
 retcode = SQLFreeStmt(hstmt&, SQL_CLOSE)
End Sub

4.50 SQLProcedureColumns

SQLProcedureColumns returns the list of input and output parameters, as well as the columns that make
up the result set for the specified procedures. The driver returns the information as a result set on the
specified hStmt.

Syntax

RETCODE = SQLProcedureColumns (hStmt, szProcQualifier, cbProcQualifier, szProcOwner,

cbProcOwner, szProcName, cbProcName, szColumnName, cbColumnName)

Arguments

Type Argument Use Description

Long hStmt Input The statement handle.

String szProcQualifier Input The procedure qualifier name.

Integer cbProcQualifier Input The length of procedure qualifier name.

String szProcOwner Input The procedure owner name.

Integer cbProcOwner Input The length of the procedure owner name.

String szProcName Input The procedure name.

Integer cbProcName Input The length of the procedure name.

String szColumnName Input The column name.

Integer cbColumnName Input The length of the column name.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or

SQL_INVALID_HANDLE

Result Set

Column Name Data Type Comments

PROCEDURE_QUALIFIER TEXT 18 The procedure qualifier name. Always NULL in the Oterro
Engine.

PROCEDURE_OWNER TEXT 18 The procedure owner name. Always NULL in the Oterro
Engine.

PROCEDURE_NAME TEXT 18 The procedure name.

COLUMN_NAME TEXT 18 The procedure column name.

COLUMN_TYPE INTEGER Returns one of the following: 0 =
SQL_PARAM_TYPE_UNKNOWN The procedure column is a
parameter whose type is unknown. 1 =
SQL_PARAM_INPUT The procedure column is an input
parameter. 2 = SQL_PARAM_INPUT_OUTPUT The
procedure column is an input/output parameter. 3 =
SQL_RESULT_COL The procedure column is a result set
column. 4 = SQL_PARAM_OUTPUT The procedure column
is an output parameter. 5 = SQL_RETURN_VALUE The
procedure column is the return value of the procedure.

Oterro 11 Help Manual140

Copyright © 1982-2024 R:BASE Technologies, Inc.

DATA_TYPE INTEGER The number representing the Oterro database data type.

TYPE_NAME TEXT 18 The Oterro database data type name.

PRECISION INTEGER The precision of the procedure column.

LENGTH INTEGER The length in bytes of data transferred.

SCALE INTEGER The scale of the procedure column.

RADIX INTEGER The base of the number system used in the database: 10
for all numeric data types (INTEGER, DOUBLE, etc.) NULL
for all non-numeric data types (TEXT, DATE, etc.)

NULLABLE INTEGER Returns one of the following: 0 = SQL_NO_NULLS The
procedure column does not accept NULL values. 1 =
SQL_NULLABLE The procedure column accepts NULL
values. 2 = SQL_NULLABLE_UNKNOWN Not known if the
procedure column accepts NULL values.

REMARKS NOTE A description of the procedure column.

Related Functions

Function Description

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLProcedures Returns the list of procedure names in the database.

Errors

SQLSTATE Description
01000 A driver-specific informational message. (Function

returns SQL_SUCCESS_WITH_INFO.)

08S01 A communication link failure.

24000 An invalid cursor state.

IM001 The driver does not support this function.

S1000 An error has occurred that has no defined SQLSTATE
—see the error message text.

S1001 A memory allocation failure.

S1008 The operation was canceled.

S1010 A function sequence error occurred.

S1090 An invalid string or buffer length.

S1C00 The driver or data source does not support the
specified type.

S1T00 The timeout period expired before the data source
returned the result.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLProcedureColumns Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szProcQualifier$, ByVal
cbProcQualifier%, ByVal szProcOwner$, ByVal cbProcOwner%, ByVal szProcName$, ByVal cbProcName
%, ByVal szColumnName$, ByVal cbColumnName%) As Integer

CODE:
Global colresults As String * 5000
Global cbcolresults As Long
Global colnum As Integer

Private Sub mdb1cpriv_Click()
 'this will return all columns for the proc1 procedure
 retcode = SQLProcedureColumns(hStmt&, "", 0, "", 0, "proc1", 5,"",0)

Oterro Engine Functions 141

Copyright © 1982-2024 R:BASE Technologies, Inc.

 errorcheck retcode
 loadtest
End Sub

Sub loadtest()
 Dim i As Integer
 Dim cblong1 As Long
 Dim cbint1 As Integer
 i = 0
 retcode = SQLNumResultCols(hStmt&, colnum)
 errorcheck retcode
 i = 1
 Do While SQLFetch(hStmt&) = SQL_SUCCESS
 Do While i <= colnum
 retcode = SQLGetData(hStmt&, i, SQL_C_CHAR, colresults,
5000, cbcolresults)
 view1.text1.Text = view1.text1.Text & vbCrLf & "Col" & i &
": " Chop(colresults)
 i = i + 1
 Loop
 i = 1
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.51 SQLProcedures

SQLProcedures returns the list of procedure names stored in a specific data source.

Syntax

RETCODE = SQLProcedures (hstmt, szProcQualifier, cbProcQualifier, szProcOwner, cbProcOwner,

szProcName, cbProcName)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

String szProcQualifier Input The procedure qualifier.

Integer cbProcQualifier Input The length of the procedure qualifier.

String szProcOwner Input The procedure owner name.

Integer cbProcOwner Input The length of the procedure owner name.

String szProcName Input The procedure name.

Integer cbProcName Input The length of the procedure name.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR,
SQL_INVALID_HANDLE.

Result Set

Oterro 11 Help Manual142

Copyright © 1982-2024 R:BASE Technologies, Inc.

Column Name Data Type Comments

PROCEDURE_QUALIFIER TEXT 18 The procedure qualifier name. Always NULL
in the Oterro Engine.

PROCEDURE_OWNER TEXT 18 The procedure owner name. Always NULL in
the Oterro Engine.

PROCEDURE_NAME TEXT 18 The procedure name.

NUM_INPUT_PARAMS INTEGER Reserved for future use.

NUM_OUTPUT_PARAMS INTEGER Reserved for future use.

NUM_RESULT_SETS INTEGER Reserved for future use.

REMARKS TEXT 254 A description of the procedure.

PROCEDURE_TYPE INTEGER Returns one of the following:

0 = SQL_PT_UNKNOWN when it cannot be
determined if the procedure returns a value.

1 = SQL_PT_PROCEDURE when the returned
object is a procedure.

2 = SQL_PT_FUNCTION when the returned
object is a function. The Oterro Engine
returns 0.

Related Functions

Function Description
SQLCancel Ends processing of a statement.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLGetInfo Queries information about a driver or data source.

SQLProcedureColumns Returns the columns for the procedures.

Errors

SQLSTATE Description
01000 A driver-specific informational message. (Function returns

SQL_SUCCESS_WITH_INFO)

08S01 A communication link failure.

24000 An invalid cursor state.

IM001 The driver does not support this function.

S1000 An error has occurred that has no defined SQLSTATE—see the
error message text.

S1001 A memory allocation failure.

S1008 The operation was canceled.

S1010 A function sequence error occurred.

S1090 An invalid string or buffer length.

S1C00 The driver or data source does not support the specified type.

S1T00 The timeout period expired before the data source returned the
requested results.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLProcedures Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szProcQualifier$, ByVal
cbProcQualifier%, ByVal szProcOwner$, ByVal cbProcOwner%, ByVal szProcName$, ByVal cbProcName
%) As Integer

Oterro Engine Functions 143

Copyright © 1982-2024 R:BASE Technologies, Inc.

CODE:
Global colresults As String * 5000
Global cbcolresults As Long
Global colnum As Integer

Private Sub mdb1cpriv_Click()
 'this will return all procedures for the database
 retcode = SQLProcedures(hStmt&, "", 0, "", 0, "", 0)
 errorcheck retcode
 loadtest
End Sub

Sub loadtest()
 Dim i As Integer
 Dim cblong1 As Long
 Dim cbint1 As Integer
 i = 0
 retcode = SQLNumResultCols(hStmt&, colnum)
 errorcheck retcode
 i = 1
 Do While SQLFetch(hStmt&) = SQL_SUCCESS
 Do While i <= colnum
 retcode = SQLGetData(hStmt&, i, SQL_C_CHAR, colresults,
5000, cbcolresults)
 view1.text1.Text = view1.text1.Text & vbCrLf & "Col" & i &
": " Chop(colresults)
 i = i + 1
 Loop
 i = 1
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.52 SQLPutData

Note: This function is not used in Visual Basic applications. This function cannot be called from Visual
Basic because it uses a pointer to a data structure as an input argument but does not use that pointer
immediately. Since Visual Basic moves data around, the pointers would become invalid. It is included
here with the syntax for using the C and C++ programming languages.

SQLPutData places the data in the statement after SQLBindParameter sets up the parameters for the
statement.

Syntax

RETCODE PASCAL SQLPutData (hstmt, rgbValue, cbValue)

Arguments

Type Argument Use Description
HSTMT hstmt Input The statement handle.

PTR rgbValue Input A pointer to storage for the data.

Oterro 11 Help Manual144

Copyright © 1982-2024 R:BASE Technologies, Inc.

SDWORD cbValue Input The length of the rgbValue area, or
either SQL_NULL_DATA or
SQL_DEFAULT_PARAM.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

4.53 SQLRowCount

SQLRowCount returns the number of rows that were affected by the update, insert, or delete in the given
hstmt, and sets pcrow to the number of rows affected.

Syntax

RETCODE = SQLRowCount (hstmt, pcrow)

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Long pcrow Output The number of rows affected.

Return Values

SQL_SUCCESS, SQL_ERROR, SQL_SUCCESS_WITH_INFO, or SQL_INVALID_HANDLE

Comments

SQLRowCount sets the pcrow argument to -1 when it is called before an update, insert, or delete
statement has been executed for this hstmt, or when the last statement executed by this hstmt was not
an update, insert, or delete.

Related Functions

Function Description
SQLExecDirect Executes an SQL statement.

SQLExecute Executes a prepared SQL statement.

Errors

SQLSTATE Description
S1000 An error has occurred that has no defined

SQLSTATE—see the error message text.

S1001 A memory allocation failure.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLRowCount Lib "ODBC32.DLL" (ByVal hstmt&, pcrow&) As Integer

Oterro Engine Functions 145

Copyright © 1982-2024 R:BASE Technologies, Inc.

CODE:
Private Sub mt1transact_Click()
 Dim cblong1 As Long
 Dim sqlstring as String
 sqlstring = "update numbers set int1 = 45 where int1 = 99" &
vbNullChar
 retcode = SQLExecDirect(hStmt&, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLRowCount(hStmt&, cblong1)
 errorcheck retcode
 If cblong1 = 1 Then
 retcode = SQLTransact(hEnv&, hdbc&, SQL_COMMIT)
 errorcheck retcode
 Else
 retcode = SQLTransact(hEnv&, hdbc&, SQL_ROLLBACK)
 errorcheck retcode
 End If
 retcode = SQLCancel(hStmt&)
End Sub

4.54 SQLSetConnectAttr

SQLSetConnectAttr sets attributes that govern aspects of connections.

Oterro calls SQLSetConnectAttr with the SQL_ATTR_ODBC_CURSORS attribute to specify whether the
cursor library is always used. Oterro supports scrollable cursors and if it returns SQL_CA1_RELATIVE for
the SQL_STATIC_CURSOR_ATTRIBUTES1 information type in SQLGetInfo, Oterro calls
SQLSetConnectAttr to specify the cursor library usage after it calls SQLAllocHandle with a HandleType of
SQL_HANDLE_DBC to allocate the connection and before it connects to the data source. If Oterro calls
SQLSetConnectAttr with the SQL_ATTR_ODBC_CURSORS attribute while the connection is still active, the
cursor library returns an error.

To set a statement attribute supported by the cursor library for all statements associated with a
connection, Oterro calls SQLSetConnectAttr for that statement attribute after it connects to the data
source and before it opens the cursor. If Oterro calls SQLSetConnectAttr with a statement attribute and a
cursor is open on a statement associated with the connection, the statement attribute will not be applied
to that statement until the cursor is closed and reopened.

Syntax

RETCODE = SQLSetConnectAttr(ConnectionHandle,Attribute,ValuePtr,StringLength)

Arguments

Type Argument Use Description

Long ConnectionHandl
e

Input Connection handle.

Integer Attribute Input Attribute to set, listed in "Comments."

Long ValuePtr Input Pointer to the value to be associated with Attribute. Depending on the
value of Attribute, ValuePtr will be a 32-bit unsigned integer value or
will point to a null-terminated character string. Note that if the Attribute
argument is a driver-specific value, the value in ValuePtr may be a
signed integer.

Integer StringLength Input If Attribute is an ODBC-defined attribute and ValuePtr points to a
character string or a binary buffer, this argument should be the length
of *ValuePtr. For character string data, this argument should contain
the number of bytes in the string.

Oterro 11 Help Manual146

Copyright © 1982-2024 R:BASE Technologies, Inc.

If Attribute is an ODBC-defined attribute and ValuePtr is an integer,
StringLength is ignored.

If Attribute is a driver-defined attribute, the application indicates the
nature of the attribute to the Driver Manager by setting the
StringLength argument. StringLength can have the following values:

If ValuePtr is a pointer to a character string, then StringLength is the
length of the string or SQL_NTS.

If ValuePtr is a pointer to a binary buffer, then the application places
the result of the SQL_LEN_BINARY_ATTR(length) macro in
StringLength. This places a negative value in StringLength.

If ValuePtr is a pointer to a value other than a character string or a
binary string, then StringLength should have the value
SQL_IS_POINTER.

If ValuePtr contains a fixed-length value, then StringLength is either
SQL_IS_INTEGER or SQL_IS_UINTEGER, as appropriate.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Errors

When SQLSetConnectAttr returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value can be obtained by calling SQLGetDiagRec with a HandleType of SQL_HANDLE_DBC and a Handle
of ConnectionHandle. The following table lists the SQLSTATE values commonly returned by
SQLSetConnectAttr and explains each one in the context of this function; the notation "(DM)" precedes
the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated with each
SQLSTATE value is SQL_ERROR, unless noted otherwise.

The driver can return SQL_SUCCESS_WITH_INFO to provide information about the result of setting an
option.

SQLSTAT
E

Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed The driver did not support the value specified in ValuePtr and
substituted a similar value. (Function returns
SQL_SUCCESS_WITH_INFO.)

08002 Connection name in
use

The Attribute argument was SQL_ATTR_ODBC_CURSORS, and the
driver was already connected to the data source.

08003 Connection does not
exist

(DM) An Attribute value was specified that required an open
connection, but the ConnectionHandle was not in a connected state.

08S01 Communication link
failure

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

24000 Invalid cursor state The Attribute argument was SQL_ATTR_CURRENT_CATALOG, and a
result set was pending.

3D000 Invalid catalog name The Attribute argument was SQL_CURRENT_CATALOG, and the
specified catalog name was invalid.

HY000 General error An error occurred for which there was no specific SQLSTATE and for
which no implementation-specific SQLSTATE was defined. The error
message returned by SQLGetDiagRec in the *MessageText buffer
describes the error and its cause.

HY001 Memory allocation
error

The driver was unable to allocate memory required to support
execution or completion of the function.

Oterro Engine Functions 147

Copyright © 1982-2024 R:BASE Technologies, Inc.

HY009 Invalid use of null
pointer

The Attribute argument identified a connection attribute that required a
string value, and the ValuePtr argument was a null pointer.

HY010 Function sequence
error

(DM) An asynchronously executing function was called for a
StatementHandle associated with the ConnectionHandle and was still
executing when SQLSetConnectAttr was called.

(DM) SQLExecute, SQLExecDirect, SQLBulkOperations, or SQLSetPos
was called for a StatementHandle associated with the
ConnectionHandle and returned SQL_NEED_DATA. This function was
called before data was sent for all data-at-execution parameters or
columns.

(DM) SQLBrowseConnect was called for the ConnectionHandle and
returned SQL_NEED_DATA. This function was called before
SQLBrowseConnect returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.

HY011 Attribute cannot be set
now

The Attribute argument was SQL_ATTR_TXN_ISOLATION, and a
transaction was open.

HY013 Memory management
error

The function call could not be processed because the underlying
memory objects could not be accessed, possibly because of low
memory conditions.

HY024 Invalid attribute value Given the specified Attribute value, an invalid value was specified in
ValuePtr. (The Driver Manager returns this SQLSTATE only for
connection and statement attributes that accept a discrete set of
values, such as SQL_ATTR_ACCESS_MODE or
SQL_ATTR_ASYNC_ENABLE. For all other connection and statement
attributes, the driver must verify the value specified in ValuePtr.)

The Attribute argument was SQL_ATTR_TRACEFILE or
SQL_ATTR_TRANSLATE_LIB, and ValuePtr was an empty string.

HY090 Invalid string or buffer
length

(DM) *ValuePtr is a character string, and the StringLength argument
was less than 0 but was not SQL_NTS.

HY092 Invalid attribute/option
identifier

(DM) The value specified for the argument Attribute was not valid for
the version of ODBC supported by the driver.

(DM) The value specified for the argument Attribute was a read-only
attribute.

HYC00 Optional feature not
implemented

The value specified for the argument Attribute was a valid ODBC
connection or statement attribute for the version of ODBC supported
by the driver but was not supported by the driver.

HYT01 Connection timeout
expired

The connection timeout period expired before the data source
responded to the request. The connection timeout period is set through
SQLSetConnectAttr, SQL_ATTR_CONNECTION_TIMEOUT.

IM001 Driver does not
support this function

(DM) The driver associated with the ConnectionHandle does not
support the function.

IM009 Unable to load
translation DLL

The driver was unable to load the translation DLL that was specified for
the connection. This error can be returned only when Attribute is
SQL_ATTR_TRANSLATE_LIB.

Comments

For general information about connection attributes, see Connection Attributes.

The currently defined attributes and the version of ODBC in which they were introduced are shown in the
table later in this section; it is expected that more attributes will be defined to take advantage of different
data sources. A range of attributes is reserved by ODBC; driver developers must reserve values for their
own driver-specific use from Open Group.

Note: The ability to set statement attributes at the connection level by calling SQLSetConnectAttr has
been deprecated in ODBC 3.x. ODBC 3.x applications should never set statement attributes at the
connection level. ODBC 3.x statement attributes cannot be set at the connection level, with the
exception of the SQL_ATTR_METADATA_ID and SQL_ATTR_ASYNC_ENABLE attributes, which are both

Oterro 11 Help Manual148

Copyright © 1982-2024 R:BASE Technologies, Inc.

connection attributes and statement attributes and can be set at either the connection level or the
statement level.

An application can call SQLSetConnectAttr at any time between the time the connection is allocated and
freed. All connection and statement attributes successfully set by the application for the connection
persist until SQLFreeHandle is called on the connection. For example, if an application calls
SQLSetConnectAttr before connecting to a data source, the attribute persists even if SQLSetConnectAttr
fails in the driver when the application connects to the data source; if an application sets a driver-specific
attribute, the attribute persists even if the application connects to a different driver on the connection.

Some connection attributes can be set only before a connection has been made; others can be set only
after a connection has been made. The following table indicates those connection attributes that must be
set either before or after a connection has been made. Either indicates that the attribute can be set either
before or after connection.

Attribute Set before or after connection?

SQL_ATTR_ACCESS_MODE Either[1]

SQL_ATTR_ASYNC_ENABLE Either[2]

SQL_ATTR_AUTOCOMMIT Either

SQL_ATTR_CONNECTION_TIMEOUT Either

SQL_ATTR_CURRENT_CATALOG Either[1]

SQL_ATTR_LOGIN_TIMEOUT Before

SQL_ATTR_METADATA_ID Either

SQL_ATTR_ODBC_CURSORS Before

SQL_ATTR_PACKET_SIZE Before

SQL_ATTR_QUIET_MODE Either

SQL_ATTR_TRACE Either

SQL_ATTR_TRACEFILE Either

SQL_ATTR_TRANSLATE_LIB After

SQL_ATTR_TRANSLATE_OPTION After

SQL_ATTR_TXN_ISOLATION Either[3]

[1] SQL_ATTR_ACCESS_MODE and SQL_ATTR_CURRENT_CATALOG can be set before or after
connecting, depending on the driver. However, interoperable applications set them before connecting
because some drivers do not support changing these after connecting.

[2] SQL_ATTR_ASYNC_ENABLE must be set before there is an active statement.

[3] SQL_ATTR_TXN_ISOLATION can be set only if there are no open transactions on the connection.
Some connection attributes support substitution of a similar value if the data source does not support the
value specified in *ValuePtr. In such cases, the driver returns SQL_SUCCESS_WITH_INFO and
SQLSTATE 01S02 (Option value changed). For example, if Attribute is SQL_ATTR_PACKET_SIZE and
*ValuePtr exceeds the maximum packet size, the driver substitutes the maximum size. To determine the
substituted value, an application calls SQLGetConnectAttr.

The format of information set in the *ValuePtr buffer depends on the specified Attribute.
SQLSetConnectAttr will accept attribute information in one of two different formats: a null-terminated
character string or a 32-bit integer value. The format of each is noted in the attribute's description.
Character strings pointed to by the ValuePtr argument of SQLSetConnectAttr have a length of
StringLength bytes.

Related Functions

Function Description

SQLAllocHandle Allocating a handle

SQLGetConnectAttr Returning the setting of a connection attribute

Code Example

// SQLConnect_ref.cpp

Oterro Engine Functions 149

Copyright © 1982-2024 R:BASE Technologies, Inc.

// compile with: odbc32.lib
#include <windows.h>
#include <sqlext.h>

int main() {
 SQLHENV henv;
 SQLHDBC hdbc;
 SQLHSTMT hstmt;
 SQLRETURN retcode;
 SQLPOINTER rgbValue;
 int i = 5;
 rgbValue = &i;

 SQLCHAR * OutConnStr = (SQLCHAR *)malloc(255);
 SQLSMALLINT * OutConnStrLen = (SQLSMALLINT *)malloc(255);

 // Allocate environment handle
 retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

 // Set the ODBC version environment attribute
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 retcode = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (void*)
SQL_OV_ODBC3, 0);

 // Allocate connection handle
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

 // Set login timeout to 5 seconds
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 SQLSetConnectAttr(hdbc, SQL_LOGIN_TIMEOUT, (SQLPOINTER)
(rgbValue), 0);

 // Connect to data source
 retcode = SQLConnect(hdbc, (SQLCHAR*) "NorthWind", SQL_NTS,
(SQLCHAR*) NULL, 0, NULL, 0);

 // Allocate statement handle
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
{
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 // Process data
 if (retcode == SQL_SUCCESS || retcode ==
SQL_SUCCESS_WITH_INFO) {
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 }

 SQLDisconnect(hdbc);
 }

 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 }
 }
 SQLFreeHandle(SQL_HANDLE_ENV, henv);

Oterro 11 Help Manual150

Copyright © 1982-2024 R:BASE Technologies, Inc.

 }
}

4.55 SQLSetConnectOption

SQLSetConnectOption sets database connection options. Connection options can also be set in the
OTERRO11.CFG file.

Syntax

RETCODE = SQLSetConnectOption (hdbc, usOption, ulParam)

Arguments

Type Argument Use Description
Long hdbc Input The database connection handle.

Integer usOption Input The information option to set.

Long ulParam Input A 32-bit integer value for usOption, or a
null-terminated character string.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Information Types

All connection options must be set before calling SQLDriverConnect. Connection options for the Oterro
Engine are as follows:

usOption Constant Value Description

SQL_ACCESS_MODE 101 0 = SQL_MODE_READ_WRITE 1 =
SQL_MODE_READ_ONLY

SQL_AUTOCOMMIT 102 1 = AUTOCOMMIT 0 = manual commit

SQL_MICRORIM_AUTOCONVERT_MODE 1010 1 = convert on 0 = convert off

SQL_MICRORIM_AUTORECOVER_MODE 1009 1 = recover on 0 = recover off

SQL_MICRORIM_AUTOROWVER_MODE 1013 1 = on 0 = off

SQL_MICRORIM_AUTOSYNC_MODE 1011 1 = sync on 0 = sync off

SQL_MICRORIM_AUTOUPGRADE_MODE 1012 1 = upgrade on 0 = upgrade off

SQL_MICRORIM_COMPATIBILITY_MODE 1001 1 = on 0 = off

SQL_MICRORIM_FASTLOCKS_MODE 1008 1 = fastlocks on 0 = fastlocks off

SQL_MICRORIM_MAX_TRANSACTIONS 1003 A number from 1 to 255 designating the
maximum number of users Oterro should
allow in transaction mode.

SQL_MICRORIM_MULTIUSER_MODE 1004 1 = multi-user on 0 = multi-user off

SQL_MICRORIM_STATICDB_MODE 1007 1 = static on 0 = static off

SQL_MICRORIM_TRANSACTION_MODE 1006 1 = transactions on 0 = transactions off

Comments

The ODBC specifications require that transaction processing be set to ON, and AUTOCOMMIT be set to
ON. You can override these defaults by setting AUTOCOMMIT OFF or TRANSACT OFF in the
OTERRO11.CFG file or with the SQLSetConnectOption; the SQLSetConnectOption will override settings in
the OTERRO11.CFG file. (An OTERRO11.CFG file is installed with the Oterro Engine.) To simplify
development and remove the need to recover databases with inconsistent transaction information caused
by a program or hardware failure, set TRANSACT OFF during application development.

Oterro Engine Functions 151

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQL_ACCESS_MODE, SQL_MICRORIM_MULTIUSER_MODE, SQL_MICRORIM_TRANSACTION_MODE, and
SQL_MICRORIM_STATICDB_MODE require users to connect in the same mode. The first person who
connects to a database determines the required settings for all other users.

Related Functions

Function Description

SQLAllocConnect Allocates a connection handle.

SQLConnect Opens a connection to a database.

SQLDriverConnect Prompts for information to open a connection to a database.

SQLGetConnectOption Queries the status of a connection option.

Errors

SQLSTATE Description

S1000 An error has occurred that has no defined SQLSTATE—see the
error message text.

S1001 A memory allocation failure.

S1092 An option type was out of range.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLSetConnectOption Lib "ODBC32.DLL" (ByVal hdbc&, ByVal usOption%, ByVal
ulParam&) As Integer

CODE:
Global cbcol1 As Long
Global cbcol2 As Long

Private Sub ok1_Click()
 If iType = 0 Then
 cbcol1 = conn2.check1.Value
 retcode = SQLSetConnectOption(hdbc&, SQL_MICRORIM_MULTIUSER_MODE,
cbcol1)
 errorcheck retcode
 cbcol2 = conn2.Check2.Value
 retcode = SQLSetConnectOption(hdbc&,
SQL_MICRORIM_TRANSACTION_MODE, cbcol2)
 errorcheck retcode
 End If
 Unload conn2
End Sub

4.56 SQLSetCursorName

SQLSetCursorName associates a cursor name with the current statement handle.

Syntax

RETCODE = SQLSetCursorName (hstmt, szCursorName, cbCursor)

Oterro 11 Help Manual152

Copyright © 1982-2024 R:BASE Technologies, Inc.

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

String szCursorName Input The buffer containing the cursor name.

Integer cbCursor Input The length of the cursor name.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

A new cursor name cannot be defined if a SELECT statement has been executed and the driver has
already defined a cursor name for the statement.

Related Functions

Function Description
SQLExecDirect Executes an SQL statement.

SQLExecute Executes a prepared SQL statement.

SQLGetCursorName Gets the name of the cursor associated with a statement handle.

SQLPrepare Prepares an SQL statement for execution.

Errors

SQLSTATE Description
24000 An invalid cursor state: A cursor is currently open on the statement handle.

34000 An invalid cursor name: The cursor specified in the statement does not exist.

3C000 The cursor name already exists.

S1000 An error has occurred that has no defined SQLSTATE—see the error message text.

S1001 A memory allocation failure.

S1009 An invalid argument value—a null pointer was passed.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLSetCursorName Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szCursorName$, ByVal
cbCursor%) As Integer

CODE:
Global xarray1(50) As Variant
Global colresults As String * 5000
Global cbcolresults As Long
Global sqlstring As String

Private Sub ms2cursor_Click()
 Dim cblong1 As Long
 Dim cbint1 As Integer
 Dim szcur1 As String
 Dim cbcur1 As Integer

Oterro Engine Functions 153

Copyright © 1982-2024 R:BASE Technologies, Inc.

 Dim szcur2 As String * 50
 Dim cbcur2 As Integer
 Dim hstmtselect As Long
 Dim hstmtupd As Long
 'to perform a positioned update, you need to define 2 statement
handles
 retcode = SQLAllocStmt(hdbc&, hstmtselect)
 retcode = SQLAllocStmt(hdbc&, hstmtupd)
 'define a cursor name and set it
 szcur1 = "testCursor9x9" & vbNullChar
 cbcur1 = Len(Chop(szcur1))
 retcode = SQLSetStmtOption(hstmtselect, SQL_ROWSET_SIZE, 1)
 errorcheck retcode
 retcode = SQLSetCursorName(hstmtselect, szcur1, cbcur1)
 errorcheck retcode
 'perform a select to activate the cursor
 sqlstring = "select real1 from numbers" & vbNullChar
 retcode = SQLExecDirect(hstmtselect, sqlstring, SQL_NTS)
 errorcheck retcode
 'fetch the third row
 retcode = SQLExtendedFetch(hstmtselect, SQL_FETCH_NEXT, 1, cblong1,
cbint1)
 errorcheck retcode
 retcode = SQLExtendedFetch(hstmtselect, SQL_FETCH_NEXT, 1, cblong1,
cbint1)
 errorcheck retcode
 retcode = SQLExtendedFetch(hstmtselect, SQL_FETCH_NEXT, 1, cblong1,
cbint1)
 errorcheck retcode
 'get the cursor name to use with the update
 retcode = SQLGetCursorName(hstmtselect, szcur2, 18, cbcur2)
 errorcheck retcode
 'execute the update and close both statements
 sqlstring = "update numbers set real1 = 9.9 where current of "
Chop(szcur2) & vbNullChar
 retcode = SQLExecDirect(hstmtupd, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLFreeStmt(hstmtselect, SQL_CLOSE)
 retcode = SQLFreeStmt(hstmtupd, SQL_CLOSE)
 'verify the update was performed
 sqlstring = "select real1 from numbers" & vbNullChar
 retcode = SQLExecDirect(hstmtselect, sqlstring, SQL_NTS)
 errorcheck retcode
 i = 1
 Do While SQLFetch(hstmtselect) = SQL_SUCCESS
 retcode = SQLGetData(hstmtselect, 1, SQL_C_CHAR, colresults,
5000, cbcolresults)
 errorcheck retcode
 xarray1(i) = Chop(colresults)
 i = i + 1
 Loop
 view2.List1.Clear
 i = 1

Oterro 11 Help Manual154

Copyright © 1982-2024 R:BASE Technologies, Inc.

 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hstmtselect, SQL_DROP)
 retcode = SQLFreeStmt(hstmtupd, SQL_DROP)
End Sub

4.57 SQLSetEnvAttr

SQLSetEnvAttr sets attributes that govern aspects of environments.

Syntax

RETCODE = SQLSetEnvAttr(EnvironmentHandle,Attribute,ValuePtr,StringLength)

Arguments

Type Argument Use Description

Long EnvironmentHandle Input Environment handle.

Integer Attribute Input Attribute to set, listed in "Comments."

String ValuePtr Input Pointer to the value to be associated with Attribute.
Depending on the value of Attribute, ValuePtr will be a 32-
bit integer value or point to a null-terminated character
string.

Integer StringLength Input If ValuePtr points to a character string or a binary buffer,
this argument should be the length of *ValuePtr. For
character string data, this argument should contain the
number of bytes in the string.

If ValuePtr is an integer, StringLength is ignored.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Errors

When SQLSetEnvAttr returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value
can be obtained by calling SQLGetDiagRec with a HandleType of SQL_HANDLE_ENV and a Handle of
EnvironmentHandle. The following table lists the SQLSTATE values typically returned by SQLSetEnvAttr
and explains each one in the context of this function; the notation "(DM)" precedes the descriptions of
SQLSTATEs returned by the Driver Manager. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise. If a driver does not support an environment attribute, the error can
be returned only during connect time.

SQLSTAT
E

Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed The driver did not support the value specified in ValuePtr and
substituted a similar value. (Function returns
SQL_SUCCESS_WITH_INFO.)

Oterro Engine Functions 155

Copyright © 1982-2024 R:BASE Technologies, Inc.

HY000 General error An error occurred for which there was no specific SQLSTATE
and for which no implementation-specific SQLSTATE was
defined. The error message returned by SQLGetDiagRec in
the *MessageText buffer describes the error and its cause.

HY001 Memory allocation error The driver was unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid use of null pointer The Attribute argument identified an environment attribute
that required a string value, and the ValuePtr argument was a
null pointer.

HY010 Function sequence error (DM) A connection handle has been allocated on
EnvironmentHandle.

HY013 Memory management error The function call could not be processed because the
underlying memory objects could not be accessed, possibly
because of low memory conditions.

HY024 Invalid attribute value Given the specified Attribute value, an invalid value was
specified in ValuePtr.

HY090 Invalid string or buffer length The StringLength argument was less than 0 but was not
SQL_NTS.

HY092 Invalid attribute/option
identifier

(DM) The value specified for the argument Attribute was not
valid for the version of ODBC supported by the driver.

HYC00 Optional feature not
implemented

The value specified for the argument Attribute was a valid
ODBC environment attribute for the version of ODBC
supported by the driver, but was not supported by the driver.
(DM) The Attribute argument was SQL_ATTR_OUTPUT_NTS,
and ValuePtr was SQL_FALSE.

Comments

An application can call SQLSetEnvAttr only if no connection handle is allocated on the environment. All
environment attributes successfully set by the application for the environment persist until
SQLFreeHandle is called on the environment. More than one environment handle can be allocated
simultaneously in ODBC 3.x.

The format of information set through ValuePtr depends on the specified Attribute. SQLSetEnvAttr will
accept attribute information in one of two different formats: a null-terminated character string or a 32-bit
integer value. The format of each is noted in the attribute's description.

There are no driver-specific environment attributes.

Connection attributes cannot be set by a call to SQLSetEnvAttr. Trying to do this will return SQLSTATE
HY092 (Invalid attribute/option identifier).

Attribute ValuePtr contents

SQL_ATTR_CONNECTION_POOLIN
G
(ODBC 3.0)

A 32-bit SQLUINTEGER value that enables or disables connection
pooling at the environment level. The following values are used:

SQL_CP_OFF = Connection pooling is turned off. This is the default.

SQL_CP_ONE_PER_DRIVER = A single connection pool is supported
for each driver. Every connection in a pool is associated with one
driver.

SQL_CP_ONE_PER_HENV = A single connection pool is supported for
each environment. Every connection in a pool is associated with one
environment.

Connection pooling is enabled by calling SQLSetEnvAttr to set the
SQL_ATTR_CONNECTION_POOLING attribute to
SQL_CP_ONE_PER_DRIVER or SQL_CP_ONE_PER_HENV. This call
must be made before the application allocates the shared
environment for which connection pooling is to be enabled. The
environment handle in the call to SQLSetEnvAttr is set to null, which
makes SQL_ATTR_CONNECTION_POOLING a process-level attribute.

Oterro 11 Help Manual156

Copyright © 1982-2024 R:BASE Technologies, Inc.

After connection pooling is enabled, the application then allocates an
implicit shared environment by calling SQLAllocHandle with the
InputHandle argument set to SQL_HANDLE_ENV.

After connection pooling has been enabled and a shared environment
has been selected for an application,
SQL_ATTR_CONNECTION_POOLING cannot be reset for that
environment, because SQLSetEnvAttr is called with a null environment
handle when setting this attribute. If this attribute is set while
connection pooling is already enabled on a shared environment, the
attribute affects only shared environments that are allocated
subsequently.

SQL_ATTR_CP_MATCH
(ODBC 3.0)

A 32-bit SQLUINTEGER value that determines how a connection is
chosen from a connection pool. When SQLConnect or
SQLDriverConnect is called, the Driver Manager determines which
connection is reused from the pool. The Driver Manager tries to match
the connection options in the call and the connection attributes set by
the application to the keywords and connection attributes of the
connections in the pool. The value of this attribute determines the
level of precision of the matching criteria.

The following values are used to set the value of this attribute:

SQL_CP_STRICT_MATCH = Only connections that exactly match the
connection options in the call and the connection attributes set by the
application are reused. This is the default.

SQL_CP_RELAXED_MATCH = Connections with matching connection
string keywords can be used. Keywords must match, but not all
connection attributes must match.

For more information about how the Driver Manager performs the
match in connecting to a pooled connection, see SQLConnect.

SQL_ATTR_ODBC_VERSION
(ODBC 3.0)

A 32-bit integer that determines whether certain functionality exhibits
ODBC 2.x behavior or ODBC 3.x behavior. The following values are
used to set the value of this attribute:

SQL_OV_ODBC3 = The Driver Manager and driver exhibit the
following ODBC 3.x behavior:

· The driver returns and expects ODBC 3.x codes for date, time,
and timestamp.

· The driver returns ODBC 3.x SQLSTATE codes when SQLError,
SQLGetDiagField, or SQLGetDiagRec is called.

· The CatalogName argument in a call to SQLTables accepts a
search pattern.

SQL_OV_ODBC2 = The Driver Manager and driver exhibit the
following ODBC 2.x behavior. This is especially useful for an ODBC
2.x application working with an ODBC 3.x driver.

· The driver returns and expects ODBC 2.x codes for date, time,
and timestamp.

· The driver returns ODBC 2.x SQLSTATE codes when SQLError,
SQLGetDiagField, or SQLGetDiagRec is called.

· The CatalogName argument in a call to SQLTables does not
accept a search pattern.

An application must set this environment attribute before it calls any
function that has an SQLHENV argument, or the call will return
SQLSTATE HY010 (Function sequence error). It is driver-specific
whether additional behavior exists for these environmental flags.

SQL_ATTR_OUTPUT_NTS (ODBC
3.0)

A 32-bit integer that determines how the driver returns string data. If
SQL_TRUE, the driver returns string data null-terminated. If
SQL_FALSE, the driver does not return string data null-terminated.

Oterro Engine Functions 157

Copyright © 1982-2024 R:BASE Technologies, Inc.

This attribute defaults to SQL_TRUE. A call to SQLSetEnvAttr to set it
to SQL_TRUE returns SQL_SUCCESS. A call to SQLSetEnvAttr to set it
to SQL_FALSE returns SQL_ERROR and SQLSTATE HYC00 (Optional
feature not implemented).

Related Functions

Function Description

SQLAllocHandle Allocating a handle

4.58 SQLSetStmtAttr

SQLSetStmtAttr sets attributes related to a statement.

Syntax

RETCODE = SQLSetStmtAttr(StatementHandle,Attribute,ValuePtr,StringLength)

Arguments

Type Argument Use Description

Long StatementHandle Input Statement handle.

Integer Attribute Input Option to set, listed in "Comments."

Long ValuePtr Input Pointer to the value to be associated with Attribute. Depending on
the value of Attribute, ValuePtr will be a 32-bit unsigned integer
value or a pointer to a null-terminated character string, a binary
buffer, or a driver-defined value. If the Attribute argument is a
driver-specific value, ValuePtr may be a signed integer.

Integer StringLength Input If Attribute is an ODBC-defined attribute and ValuePtr points to a
character string or a binary buffer, this argument should be the
length of *ValuePtr. If Attribute is an ODBC-defined attribute and
ValuePtr is an integer, StringLength is ignored.

If Attribute is a driver-defined attribute, the application indicates
the nature of the attribute to the Driver Manager by setting the
StringLength argument. StringLength can have the following
values:

· If ValuePtr is a pointer to a character string, then StringLength
is the length of the string or SQL_NTS.

· If ValuePtr is a pointer to a binary buffer, then the application
places the result of the SQL_LEN_BINARY_ATTR(length) macro
in StringLength. This places a negative value in StringLength.

· If ValuePtr is a pointer to a value other than a character string
or a binary string, then StringLength should have the value
SQL_IS_POINTER.

· If ValuePtr contains a fixed-length value, then StringLength is
either SQL_IS_INTEGER or SQL_IS_UINTEGER, as appropriate.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Oterro 11 Help Manual158

Copyright © 1982-2024 R:BASE Technologies, Inc.

Errors

When SQLSetStmtAttr returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLGetDiagRec with a HandleType of SQL_HANDLE_STMT and a Handle
of StatementHandle. The following table lists the SQLSTATE values commonly returned by
SQLSetStmtAttr and explains each one in the context of this function; the notation "(DM)" precedes the
descriptions of SQLSTATEs returned by the Driver Manager. The return code associated with each
SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed The driver did not support the value specified in ValuePtr, or
the value specified in ValuePtr was invalid because of
implementation working conditions, so the driver substituted
a similar value. (SQLGetStmtAttr can be called to determine
the temporarily substituted value.) The substitute value is
valid for the StatementHandle until the cursor is closed, at
which point the statement attribute reverts to its previous
value. The statement attributes that can be changed are:
SQL_ ATTR_CONCURRENCY
SQL_ ATTR_CURSOR_TYPE
SQL_ ATTR_KEYSET_SIZE
SQL_ ATTR_MAX_LENGTH
SQL_ ATTR_MAX_ROWS
SQL_ ATTR_QUERY_TIMEOUT
SQL_ATTR_ROW_ARRAY_SIZE
SQL_ ATTR_SIMULATE_CURSOR

(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure The communication link between the driver and the data
source to which the driver was connected failed before the
function completed processing.

24000 Invalid cursor state The Attribute was SQL_ATTR_CONCURRENCY,
SQL_ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR,
or SQL_ATTR_USE_BOOKMARKS, and the cursor was open.

HY000 General error An error occurred for which there was no specific SQLSTATE
and for which no implementation-specific SQLSTATE was
defined. The error message returned by SQLGetDiagRec in
the *MessageText buffer describes the error and its cause.

HY001 Memory allocation error The driver was unable to allocate memory required to
support execution or completion of the function.

HY009 Invalid use of null pointer The Attribute argument identified a statement attribute that
required a string attribute, and the ValuePtr argument was a
null pointer.

HY010 Function sequence error (DM) An asynchronously executing function was called for
the StatementHandle and was still executing when this
function was called.

(DM) SQLExecute, SQLExecDirect, SQLBulkOperations, or
SQLSetPos was called for the StatementHandle and returned
SQL_NEED_DATA. This function was called before data was
sent for all data-at-execution parameters or columns.

HY011 Attribute cannot be set now The Attribute was SQL_ATTR_CONCURRENCY, SQL_
ATTR_CURSOR_TYPE, SQL_ ATTR_SIMULATE_CURSOR, or
SQL_ ATTR_USE_BOOKMARKS, and the statement was
prepared.

HY013 Memory management error The function call could not be processed because the
underlying memory objects could not be accessed, possibly
because of low memory conditions.

HY017 Invalid use of an
automatically allocated
descriptor handle

(DM) The Attribute argument was
SQL_ATTR_IMP_ROW_DESC or
SQL_ATTR_IMP_PARAM_DESC.

Oterro Engine Functions 159

Copyright © 1982-2024 R:BASE Technologies, Inc.

(DM) The Attribute argument was
SQL_ATTR_APP_ROW_DESC or
SQL_ATTR_APP_PARAM_DESC, and the value in ValuePtr
was an implicitly allocated descriptor handle other than the
handle originally allocated for the ARD or APD.

HY024 Invalid attribute value Given the specified Attribute value, an invalid value was
specified in ValuePtr. (The Driver Manager returns this
SQLSTATE only for connection and statement attributes that
accept a discrete set of values, such as
SQL_ATTR_ACCESS_MODE or SQL_ ATTR_ASYNC_ENABLE.
For all other connection and statement attributes, the driver
must verify the value specified in ValuePtr.)

The Attribute argument was SQL_ATTR_APP_ROW_DESC or
SQL_ATTR_APP_PARAM_DESC, and ValuePtr was an
explicitly allocated descriptor handle that is not on the same
connection as the StatementHandle argument.

HY090 Invalid string or buffer length (DM) *ValuePtr is a character string, and the StringLength
argument was less than 0 but was not SQL_NTS.

HY092 Invalid attribute/option
identifier

(DM) The value specified for the argument Attribute was not
valid for the version of ODBC supported by the driver.

(DM) The value specified for the argument Attribute was a
read-only attribute.

HYC00 Optional feature not
implemented

The value specified for the argument Attribute was a valid
ODBC statement attribute for the version of ODBC supported
by the driver but was not supported by the driver.

The Attribute argument was SQL_ATTR_ASYNC_ENABLE, and
a call to SQLGetInfo with an InfoType of SQL_ASYNC_MODE
returns SQL_AM_CONNECTION.

The Attribute argument was SQL_ATTR_ENABLE_AUTO_IPD,
and the value of the connection attribute
SQL_ATTR_AUTO_IPD was SQL_FALSE.

HYT01 Connection timeout expired The connection timeout period expired before the data
source responded to the request. The connection timeout
period is set through SQLSetConnectAttr,
SQL_ATTR_CONNECTION_TIMEOUT.

IM001 Driver does not support this
function

(DM) The driver associated with the StatementHandle does
not support the function.

Comments

Statement attributes for a statement remain in effect until they are changed by another call to
SQLSetStmtAttr or until the statement is dropped by calling SQLFreeHandle. Calling SQLFreeStmt with the
SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS option does not reset statement attributes.

Some statement attributes support substitution of a similar value if the data source does not support the
value specified in ValuePtr. In such cases, the driver returns SQL_SUCCESS_WITH_INFO and SQLSTATE
01S02 (Option value changed). For example, if Attribute is SQL_ATTR_CONCURRENCY and ValuePtr is
SQL_CONCUR_ROWVER, and if the data source does not support this, the driver substitutes
SQL_CONCUR_VALUES and returns SQL_SUCCESS_WITH_INFO. To determine the substituted value, an
application calls SQLGetStmtAttr.

The format of information set with ValuePtr depends on the specified Attribute. SQLSetStmtAttr accepts
attribute information in one of two different formats: a character string or a 32-bit integer value. The
format of each is noted in the attribute's description. This format applies to the information returned for
each attribute in SQLGetStmtAttr. Character strings pointed to by the ValuePtr argument of
SQLSetStmtAttr have a length of StringLength.

Note: The ability to set statement attributes at the connection level by calling SQLSetConnectAttr has
been deprecated in ODBC 3.x. ODBC 3.x applications should never set statement attributes at the

Oterro 11 Help Manual160

Copyright © 1982-2024 R:BASE Technologies, Inc.

connection level. ODBC 3.x statement attributes cannot be set at the connection level, with the
exception of the SQL_ATTR_METADATA_ID and SQL_ATTR_ASYNC_ENABLE attributes, which are both
connection attributes and statement attributes, and can be set at either the connection level or the
statement level.

Related Functions

Function Description

SQLCancel Canceling statement processing

SQLGetConnectAttr Returning the setting of a connection attribute

SQLGetStmtAttr Returning the setting of a statement attribute

SQLSetConnectAttr Setting a connection attribute

4.59 SQLSetPos

Note: This function requires SQLBindColumns in order to exercise all of its options. Since Visual Basic
does not support SQLBindColumns, this function will not work. It is included here with the syntax for
using the C or C++ programming language.

SQLSetPos sets the cursor position in a rowset and allows an application to refresh, update, delete, or
add data to the rowset.

Syntax

RETCODE PASCAL SQLSetPos (hstmt, irow, fOption, fLock)

Arguments

Type Argument Use Description
HSTMT hstmt Input The statement handle.

UWORD irow Input The position of the row in the rowset on which
the operation is to be performed. If irow is 0, the
operation applies to every row.

UWORD fOption Input The operation to perform.

UWORD fLock Input Specifies how to lock the row after performing
the operation:
SQL_LOCK_NO_CHANGE
SQL_LOCK_EXCLUSIVE
SQL_LOCK_UNLOCK

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

fOption Argument

fOption Argument Operation

SQL_POSITION The driver puts the cursor on the row specified by irow.

SQL_REFRESH The driver puts the cursor on the row specified by irow and
refreshes data in the rowset buffers for that row.

SQL_UPDATE The driver puts the cursor on the row specified by irow and
updates the row of data with the values in the rowset buffers.

SQL_DELETE The driver positions the cursor on the row specified by irow
and deletes the row of data.

Oterro Engine Functions 161

Copyright © 1982-2024 R:BASE Technologies, Inc.

4.60 SQLSetScrollOptions

SQLSetScrollOptions sets the scrolling functionality of cursors; it is limited to setting scrolling type and
has no effect on the row locking methods.

Syntax

RETCODE = SQLSetScrollOptions (hstmt, fConcurrency, crowKeyset, crowRowset)

Arguments

Type Argument Use Description

Long hstmt Input The statement handle.

Integer fConcurrency Input Accepts only SQL_CONCUR_LOCK.

Long crowKeyset Input Accepts only SQL_SCROLL_FORWARD_ONLY
or SQL_SCROLL_KEYSET_DRIVEN.

Integer crowRowset Input The number of rows in a rowset.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

This function has been replaced by the SQLSetStmtOption function; it is included only for compatibility
with previous versions of ODBC.
This function calls SQLSetStmtOption to set the cursor scroll options.

4.61 SQLSetStmtOption

SQLSetStmtOption sets an option for a particular statement and sets cursor scrolling functionality.

Syntax

RETCODE = SQLSetStmtOption (hstmt, fOption, vParam)

Arguments

Type Argument Use Description

Long hstmt Input The statement handle.

Integer fOption Input The information option to set.

Long vParam Input A 32-bit integer value for fOption.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Information Types

Statement options that are supported by the Oterro Engine:

Oterro 11 Help Manual162

Copyright © 1982-2024 R:BASE Technologies, Inc.

fOption Constant Value Description

SQL_ASYNC_ENABLE 4 Specifies whether a statement is executed
asynchronously.

SQL_BIND_TYPE 5 Specifies the binding orientation.

SQL_CONCURRENCY 7 May be one of the following:
SQL_CONCUR_LOCK
SQL_CONCUR_READ_ONLY
SQL_CONCUR_ROWVER
SQL_CONCUR_VALUES

SQL_CURSOR_TYPE 6 May be one of the following:
SQL_CURSOR_FORWARD_ONLY
SQL_CURSOR_KEYSET_DRIVEN
SQL_CURSOR_STATIC
SQL_CURSOR_DYNAMIC

SQL_KEYSET_SIZE 8 Number of rows in a KEYSET.

SQL_MAX_LENGTH 3 The maximum length of data from a text column.

SQL_MAX_ROWS 1 The maximum number of rows to be returned.

SQL_NOSCAN 2 Specifies whether SQL strings are scanned for
escape clauses.

SQL_QUERY_TIMEOUT 0 Number of seconds before timing out on an SQL
statement.

SQL_RETRIEVE_DATA 15 Specifies whether an SQLExtendedFetch retrieves
data after positioning.

SQL_ROWSET_SIZE 9 Number of rows returned.

SQL_SIMULATE_CURSOR 10 Specifies whether positioned update and delete
affect only one row.

SQL_USE_BOOKMARK 23 Specifies whether bookmarks will be used.
SQL_UB_OFF or SQL_UB_ON.

Related Functions

Function Description
SQLCancel Ends processing on a statement.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLGetStmtOption Queries the status of a statement option.

SQLSetScrollOptions Sets the scrolling functionality of cursors.

Errors

SQLSTATE Description
01000 A driver-specific informational message. (The function returns

SQL_SUCCESS_WITH_INFO.)

08S01 The data source connection failed before the function completed processing.

24000 An invalid cursor state: A cursor is currently open on the statement handle.

IM001 The driver associated with the hstmt does not support the function.

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1009 An invalid argument value—a null pointer was passed.

S1092 An option type was out of range.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLSetStmtOption Lib "ODBC32.DLL" (ByVal hstmt&, ByVal fOption%, ByVal vParam&)
As Integer

Oterro Engine Functions 163

Copyright © 1982-2024 R:BASE Technologies, Inc.

Global sqlstring As String

Private Sub ms2extfetch_Click()
 Dim cblong1 As Long
 Dim cbint1 As Integer
 Dim i As Integer
 Dim n As Integer
 sqlstring = "select int1,real1,doub1 from numbers" & vbNullChar
 retcode = SQLPrepare(hStmt&, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLExecute(hStmt&)
 errorcheck retcode
 retcode = SQLSetStmtOption(hStmt&, SQL_CURSOR_TYPE,
SQL_CURSOR_DYNAMIC)
 retcode = SQLGetStmtOption(hStmt&, SQL_CURSOR_TYPE, cblong1)
 xarray1(1) = "cursor type = " & cblong1
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_FIRST, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(2) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_LAST, 1, cblong1, cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(3) = Chop(colresults)
 retcode = SQLExtendedFetch(hStmt&, SQL_FETCH_PRIOR, 1, cblong1,
cbint1)
 retcode = SQLGetData(hStmt&, 1, SQL_C_CHAR, colresults, 5000,
cbcolresults)
 xarray1(4) = Chop(colresults)
 view2.List1.Clear
 i = 1
 n = 1
 Do While n <> 0
 view2.List1.AddItem xarray1(i)
 i = i + 1
 n = Len(xarray1(i))
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.62 SQLSpecialColumns

SQLSpecialColumns returns information about the set of columns that uniquely identifies a row
associated with the set of columns (such as a special rowid column, or a column with a primary key or
unique constraint), and a set of columns that identifies when a row is modified.

Syntax

RETCODE=SQLSpecialColumns(hstmt, fColType, szTableQualifier, cbTableQualifier, szTableOwner,

cbTableOwner, szTableName, cbTableName, fScope, fNullable)

Oterro 11 Help Manual164

Copyright © 1982-2024 R:BASE Technologies, Inc.

Arguments

Type Argument Use Description
Long hstmt Input The statement handle.

Integer fColType Input SQL_BEST_ROWID or SQL_ROWVER.

String szTableQualifier Input The buffer containing the table qualifier.

Integer cbTableQualifier Input The length of the table qualifier.

String szTableOwner Input The buffer containing the table-owner name.

Integer cbTableOwner Input The length of the table-owner name.

String szTableName Input The buffer containing the table name.

Integer cbTableName Input The length of the table name.

Integer fScope Input Accepts one of the following:
SQL_SCOPE_CURROW
SQL_SCOPE_TRANSACTION
SQL_SCOPE_SESSION

Integer fNullable Input Returns either SQL_NO_NULLS (columns that
are defined as primary keys or not NULL
constraints) or SQL_NULLABLE.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Result Set

Column Name Data Type Comments

SCOPE INTEGER SQL_SCOPE_SESSION (2) or NULL.

COLUMN_NAME TEXT 18 The column name.

DATA_TYPE INTEGER Either the ODBC or Oterro data type. See SQLGetTypeInfo
for a list of valid data types.

TYPE_NAME TEXT 8 The textual name of the data type, for example, INTEGER.

PRECISION INTEGER The precision of the data type for the COLUMN_NAME.

LENGTH INTEGER The length of the data type for COLUMN_NAME.

SCALE INTEGER The scale of the column.

PSEUDO_COLUMN INTEGER Specifies if the column is a pseudo-column.

Comments

When the value of fColType is SQL_BEST_ROWID, the function returns the column name(s) that uniquely
defines a row. The function returns a primary key or unique column when one is defined, or an empty set
when a primary key or unique column is not defined.

When the value of fColType is SQL_ROWVER, the function returns the column name(s) to use to identify
when a row is modified. This use is primarily for concurrency control.

Related Functions

Function Description
SQLCancel Ends processing on a statement.

SQLColumns Returns the columns in a table(s).

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLPrimaryKeys Returns the columns defined as primary keys.

Errors

Oterro Engine Functions 165

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLSTATE Description
01000 A driver-specific informational message. (The function returns

SQL_SUCCESS_WITH_INFO.)

08S01 The data source connection failed before the function completed
processing.

24000 An invalid cursor state: A cursor is currently open on the statement
handle.

IM001 The driver associated with the hstmt does not support the function.

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

S1097 An invalid fColType value was specified.

S1098 An invalid fScope value was specified.

S1099 An invalid fNullable value was specified.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLSpecialColumns Lib "ODBC32.DLL" (ByVal hstmt&, ByVal fColType%, ByVal
szTableQualifier$, ByVal cbTableQualifier%, ByVal szTableOwner$, ByVal cbTableOwner%, ByVal
szTableName$, ByVal cbTableName%, ByVal fScope%, ByVal fNullable%) As Integer

CODE:
Global colresults As String * 5000
Global cbcolresutles As Long
Global colnum As Integer

Private Sub mdb1spcol_Click()
 retcode = SQLSpecialColumns(hStmt&, SQL_BEST_ROWID, "", 0, "", 0,
"numbers", 7, SQL_SCOPE_SESSION, SQL_NULLABLE)
 errorcheck retcode
 loadtest
End Sub

Sub loadtest()
 Dim i As Integer
 Dim cblong1 As Long
 Dim cbint1 As Integer
 i = 0
 retcode = SQLNumResultCols(hStmt&, colnum)
 errorcheck retcode
 i = 1
 Do While SQLFetch(hStmt&) = SQL_SUCCESS
 Do While i <= colnum
 retcode = SQLGetData(hStmt&, i, SQL_C_CHAR, colresults,
5000, cbcolresults)
 view1.text1.Text = view1.text1.Text & vbCrLf & "Col" & i &
": " Chop(colresults)
 i = i + 1
 Loop
 i = 1
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)

Oterro 11 Help Manual166

Copyright © 1982-2024 R:BASE Technologies, Inc.

End Sub

4.63 SQLStatistics

SQLStatistics returns statistics for a table and its indexes.

Syntax

RETCODE=SQLStatistics(hstmt, szTableQualifier, cbTableQualifier, szTableOwner, cbTableOwner,

szTableName, cbTableName, fUnique, fAccuracy)

Arguments

Type Argument Use Description

Long hstmt Input The statement handle.

String szTableQualifier Input The buffer containing the table qualifier.

Integer cbTableQualifier Input The length of the table qualifier.

String szTableOwner Input The buffer containing the table-owner name.

Integer cbTableOwner Input The length of the table-owner name.

String szTableName Input The buffer containing the table name.

Integer cbTableName Input The length of the table name.

Integer fUnique Input The type of index; accepts either
SQL_INDEX_UNIQUE or SQL_INDEX_ALL

Integer fAccuracy Input The accuracy of the statistics returned.
Accepts either: SQL_ENSURE—statistics are
always retrieved SQL_QUICK—statistics are
retrieved if they are readily available

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Result Set

Column Name Data Type Comments
TABLE_QUALIFIER TEXT 18 The table qualifier. Always NULL for the Oterro

Engine.

TABLE_OWNER TEXT 18 The table owner name. Always NULL for the Oterro
Engine.

TABLE_NAME TEXT 18 The table name.

NON_UNIQUE INTEGER Indicates if the index allows duplicate values.
0 = UNIQUE index 1 = duplicate values allowed

INDEX_QUALIFIER TEXT 18 The index qualifier. Always NULL for the Oterro
Engine.

INDEX_NAME TEXT 18 The index name.

TYPE INTEGER The information type returned. The Oterro Engine
always returns SQL_INDEX_OTHER (3) indicating
"other index type".

SEQ_IN_INDEX TEXT 18 The column sequence number in the index. Always
1 unless a multi-column index is defined. Multi-
column indexes contain the sequence number
identifying the order of the column in the multi-
column index, for example, 1, 2, 3 etc. Multi-
column indexes are sorted in the order the
columns are specified.

COLUMN_NAME TEXT 18 The column name the index is built on.

Oterro Engine Functions 167

Copyright © 1982-2024 R:BASE Technologies, Inc.

COLLATION TEXT 1 The sort order for the index. A - Ascending
D - Descending

CARDINALITY INTEGER The cardinality of the table or index. Always NULL
for the Oterro Engine.

PAGES INTEGER The number of pages used to store the table or
index. Always NULL for the Oterro Engine.

FILTER_CONDITION TEXT 18 The check condition for the index. Always NULL for
the Oterro Engine.

Comments

The value for fUnique can be either SQL_INDEX_UNIQUE or SQL_INDEX_ALL. The option
SQL_INDEX_UNIQUE only returns indexes with unique constraints. The option SQL_INDEX_ALL returns all
indexes in random order.

Related Functions

Function Description
SQLCancel Ends processing on a statement.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLForeignKeys Returns the columns defined as foreign keys.

SQLPrimaryKeys Returns the columns defined as primary keys.

SQLTablePrivileges Returns the privileges assigned to the table.

Errors

SQLSTATE Description
01000 A driver-specific informational message. (The function returns

SQL_SUCCESS_WITH_INFO.)

08S01 The data source connection failed before the function
completed processing.

24000 An invalid cursor state: A cursor is currently open on the
statement handle.

IM001 The driver associated with the hstmt does not support the
function.

S1000 An error has occurred that has no defined SQLSTATE—see the
error message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

S1100 An invalid fUnique value was specified.

S1101 An invalid fAccuracy value was specified.

S1C00 The driver or data source does not support the specified type.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLStatistics Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szTableQualifier$, ByVal
cbTableQualifier%, ByVal szTableOwner$, ByVal cbTableOwner%, ByVal szTableName$, ByVal
cbTableName%, ByVal fUnique%, ByVal fAccuracy%) As Integer

CODE:
Global colnum As Integer
Global szTableName As String * 20
Global cbTableName As Integer

Oterro 11 Help Manual168

Copyright © 1982-2024 R:BASE Technologies, Inc.

Global szFirst As String * 1500
Global cbFirst As Long

Sub statindex()
 Dim i As Integer
 retcode = SQLStatistics(hstmt&, "", 0, "", 0, szTableName,
cbTableName, SQL_INDEX_ALL, SQL_ENSURE)
 errorcheck retcode
 load2grid
End Sub

Sub load2grid()
 Dim i As Integer
 Dim n As Integer
 n = 1
 i = 1
 retcode = SQLNumResultCols(hstmt&, colnum)
 errorcheck retcode
 Do While SQLFetch(hstmt&) = SQL_SUCCESS
 dbstr1.Grid2.Row = n
 Do While i <= colnum
 retcode = SQLGetData(hstmt&, i, SQL_C_CHAR, szFirst, 255,
cbFirst)
 If dbstr1.Grid2.ColWidth(i) < Abs(cbFirst) * 120 Then
 dbstr1.Grid2.ColWidth(i) = Abs(cbFirst) * 120
 End If
 dbstr1.Grid2.Col = i
 dbstr1.Grid2.Text = Chop(szFirst)
 i = i + 1
 Loop
 n = n + 1
 i = 1
 Loop
 retcode = SQLFreeStmt(hstmt&, SQL_CLOSE)
End Sub

4.64 SQLTablePrivileges

SQLTablePrivileges returns a list of tables and the privileges associated with each table.

Syntax

RETCODE = SQLTablePrivileges (hStmt, szTableQualifier, cbTableQualifier, szTableOwner,

cbTableOwner, szTableName, cbTableName)

Arguments

Type Argument Use Description
Long hStmt Input The statement handle.

String szTableQualifier Input The table qualifier.

Integer cbTableQualifier Input The length of the table qualifier.

Oterro Engine Functions 169

Copyright © 1982-2024 R:BASE Technologies, Inc.

String szTableOwner Input The table owner name.

Integer cbTableOwner Input The length of the table owner name.

String szTableName Input A table name.

Integer cbTableName Input The length of the table name.

Return Values

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or

SQL_INVALID_HANDLE

Result Set

Column Name Data Type Comments
TABLE_QUALIFIER TEXT 18 The table qualifier. Always NULL in the Oterro

Engine.

TABLE_OWNER TEXT 18 The table owner name. Always NULL in the
Oterro Engine.

TABLE_NAME TEXT 18 The table name.

GRANTOR TEXT 18 The user who granted the privilege. Always
NULL in the Oterro Engine.

GRANTEE TEXT 18 The user the privilege was granted to.

PRIVILEGE TEXT 128 The table privilege; one of the following:
ALTER, SELECT, INSERT, UPDATE, DELETE,
REFERENCES.

IS_GRANTABLE TEXT 3 Indicates if the grantee is permitted to grant the
privilege to other users. Always NULL for the
Oterro Engine.

Related Functions

Function Description
SQLColumnPrivileges Returns the privileges assigned to the columns of a table.

SQLColumns Returns the columns in a table.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLStatistics Returns statistics for tables and indexes.

SQLTables Returns the tables in a database.

Errors

SQLSTATE Description
01000 A driver-specific informational message. (Function returns

SQL_SUCCESS_WTIH_INFO.)

08S01 The data source connection failed before the function completed
processing.

24000 An invalid cursor state.

IM001 The driver does not support this function.

S1000 An error has occurred that has no defined SQLSTATE—see the error
message text.

S1001 A memory allocation failure.

S1008 The operation was canceled.

S1010 A function sequence error occurred.

S1090 An invalid string or buffer length.

S1C00 The driver or data source does not support the specified type.

S1T00 The timeout period expired before the data source returned the
result.

Oterro 11 Help Manual170

Copyright © 1982-2024 R:BASE Technologies, Inc.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLTablePrivileges Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szTableQualifier$, ByVal
cbTableQualifier%, ByVal szTableOwner$, ByVal cbTableOwner%, ByVal szTableName$, ByVal
cbTableName%) As Integer

CODE:
Global colresults As String * 5000
Global cbcolresutles As Long
Global colnum As Integer

Private Sub mdb1tpriv_Click()
 'the following will return privileges on all tables in the database
 retcode = SQLTablePrivileges(hStmt&, "", 0, "", 0, "", 0)
 errorcheck retcode
 loadtest
End Sub

Sub loadtest()
 Dim i As Integer
 Dim cblong1 As Long
 Dim cbint1 As Integer
 i = 0
 retcode = SQLNumResultCols(hStmt&, colnum)
 errorcheck retcode
 i = 1
 Do While SQLFetch(hStmt&) = SQL_SUCCESS
 Do While i <= colnum
 retcode = SQLGetData(hStmt&, i, SQL_C_CHAR, colresults,
5000, cbcolresults)
 view1.text1.Text = view1.text1.Text & vbCrLf & "Col" & i &
": " Chop(colresults)
 i = i + 1
 Loop
 i = 1
 Loop
 retcode = SQLFreeStmt(hStmt&, SQL_CLOSE)
End Sub

4.65 SQLTables

SQLTables retrieves the list of available tables in the database.

Syntax

RETCODE = SQLTables(hstmt, szTableQualifier, cbTableQualifier, szTableOwner, cbTableOwner,

szTableName, cbTableName, szTableType, cbTableType)

Arguments

Oterro Engine Functions 171

Copyright © 1982-2024 R:BASE Technologies, Inc.

Type Argument Use Description
Long hstmt Input The statement handle.

String szTableQualifier Input The buffer containing the table qualifier.

Integer cbTableQualifier Input The length of the table qualifier.

String szTableOwner Input The buffer containing the table-owner name.

Integer cbTableOwner Input The length of the table-owner name.

String szTableName Input The buffer containing the table name.

Integer cbTableName Input The length of the table name.

String szTableType Input The table types to match.

Integer cbTableType Input The length of the table types.

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Result Set

Column Name Data Type Comments
TABLE_QUALIFIER TEXT 18 The table qualifier. Always NULL for the

Oterro Engine.

TABLE_OWNER TEXT 18 The table owner name. Always NULL for
the Oterro Engine.

TABLE_NAME TEXT 18 The table name.

TABLE_TYPE TEXT 18 The table type. The Oterro Engine
returns one of the following: TABLE
VIEW SYSTEM TABLE

REMARKS NOTE A description of the table, if one has
been defined.

Comments

Only the statement handle and table-name parameter are allowed by the Oterro Engine.

Information about users' privileges is not necessarily checked, so that any table names returned by
SQLTables are not guaranteed to be accessible by the user identifier specified during SQLDriverConnect.

The results are processed like any other query, such as a query using SQLFetch. SQLDescribeCol should
be used to determine the data type and length of the column containing the table name.

The szTableName pattern-match string can contain the SQL wild card characters '%' (for matching many
characters) and '_' (for matching a single character).

Related Functions

Function Description

SQLColumnPrivileges Returns the privileges assigned to the columns of a table.

SQLColumns Returns the columns in a table(s).

SQLDescribeCol Describes a column in a result set.

SQLExtendedFetch Fetches one row of a result set; allows scrolling.

SQLFetch Fetches one row of a result set.

SQLTablePrivileges Returns the privileges assigned to the table.

Errors

SQLSTATE Description

Oterro 11 Help Manual172

Copyright © 1982-2024 R:BASE Technologies, Inc.

24000 An invalid cursor state: A cursor is currently open on the
statement handle.

S1000 An error has occurred that has no defined SQLSTATE—see
the error message text.

S1001 A memory allocation failure.

S1090 An invalid string or buffer length.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLTables Lib "ODBC32.DLL" (ByVal hstmt&, ByVal szTableQualifier$, ByVal
cbTableQualifier%, ByVal szTableOwner$, ByVal cbTableOwner%, ByVal szTableName$, ByVal
cbTableName%, ByVal szTableType$, ByVal cbTableType%) As Integer

CODE:
Global colnum As Integer
Global szTableName As String * 20
Global cbTableName As Integer
Global szFirst As String * 1500
Global cbFirst As Long
Global szLast As String * 1500
Global cbLast As Long

Private Sub Form_Load()
 dbstr1.MousePointer = 11
 'returns all tables in the database
 retcode = SQLTables(hstmt&, "", 0, "", 0, "", 0, "", 0)
 errorcheck retcode
 Do While SQLFetch(hstmt&) = SQL_SUCCESS
 retcode = SQLGetData(hstmt&, 3, SQL_C_CHAR, szFirst, 255,
cbFirst)
 errorcheck retcode
 retcode = SQLGetData(hstmt&, 4, SQL_C_CHAR, szLast, 255, cbLast)
 errorcheck retcode
 If Left(szFirst, 4) = "SYS_" Then
 Else
 If Chop(szLast) = "TABLE" Then
 dbstr1.list1.AddItem "T " & szFirst
 Else
 dbstr1.list1.AddItem "V " & szFirst
 End If
 End If
 Loop
 retcode = SQLFreeStmt(hstmt&, SQL_CLOSE)
 dbstr1.MousePointer = 1
End Sub

4.66 SQLTransact

SQLTransact commits or rolls back all uncommitted transactions for all statement handles for the
connection specified by hdbc.

Syntax

Oterro Engine Functions 173

Copyright © 1982-2024 R:BASE Technologies, Inc.

RETCODE = SQLTransact (henv, hdbc, fType)

Arguments

Type Argument Use Description
Long henv Input The environment handle.

Long hdbc Input The database connection handle.

Integer fType Input Accepts either SQL_COMMIT (0) or
SQL_ROLLBACK (1).

Return Values

SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE

Comments

You can think of a single connection as processing a sequence of statements. In other words, separate
statement handles do not represent different statement processing threads. Only one thread is in a
statement execution. Therefore, executing a commit or rollback affects all statement handles on the
current connection. All cursors are closed upon processing a transaction command.

Passing an environment handle to the SQLTransact function causes all transactions pending in the
specified environment to be either committed or rolled back, depending on the value of fType.

Errors

SQLSTATE Description
08003 No database has been connected.

S1000 An error has occurred that has no defined SQLSTATE—
see the error message text.

S1001 A memory allocation failure.

S1012 An invalid transaction option: fType was not
SQL_COMMIT or SQL_ROLLBACK.

Visual Basic Example

SQLAPI.BAS:
Declare Function SQLTransact Lib "ODBC32.DLL" (ByVal henv&, ByVal hdbc&, ByVal fType%) As Integer

CODE:
Private Sub mt1transact_Click()
 Dim cblong1 As Long
 Dim sqlstring as String
 sqlstring = "update numbers set int1 = 45 where int1 = 99" &
vbNullChar
 retcode = SQLExecDirect(hStmt&, sqlstring, SQL_NTS)
 errorcheck retcode
 retcode = SQLRowCount(hStmt&, cblong1)
 errorcheck retcode
 If cblong1 = 1 Then
 retcode = SQLTransact(hEnv&, hdbc&, SQL_COMMIT)

Oterro 11 Help Manual174

Copyright © 1982-2024 R:BASE Technologies, Inc.

 errorcheck retcode
 Else
 retcode = SQLTransact(hEnv&, hdbc&, SQL_ROLLBACK)
 errorcheck retcode
 End If
 retcode = SQLCancel(hStmt&)
End Sub

Part

V

Oterro 11 Help Manual176

Copyright © 1982-2024 R:BASE Technologies, Inc.

5 ODBC Reference Topics

5.1 Connection Attributes

Connection attributes are characteristics of the connection. For example, because transactions occur at
the connection level, the transaction isolation level is a connection attribute. Similarly, the login timeout,
or number of seconds to wait while trying to connect before timing out, is a connection attribute.

Connection attributes are set with SQLSetConnectAttr and their current settings retrieved with
SQLGetConnectAttr. If SQLSetConnectAttr is called before the driver is loaded, the Driver Manager
stores the attributes in its connection structure and sets them in the driver as part of the connection
process. There is no requirement that an application set any connection attributes; all connection
attributes have defaults, some of which are driver-specific.

A connection attribute can be set before or after connection, or either, depending on the attribute and the
driver. The login timeout (SQL_ATTR_LOGIN_TIMEOUT) applies to the connection process and is effective
only if set before connecting. The attributes that specify whether to use the ODBC cursor library
(SQL_ATTR_ODBC_CURSORS) and the network packet size (SQL_ATTR_PACKET_SIZE) must be set
before connecting, because the ODBC cursor library resides between the Driver Manager and the driver
and therefore must be loaded before the driver.

The attributes to specify whether a data source is read-only or read-write (SQL_ATTR_ACCESS_MODE)
and the current catalog (SQL_ATTR_CURRENT_CATALOG) can be set before or after connecting,
depending on the driver. However, interoperable applications set them before connecting because some
drivers do not support changing these after connecting.

Some connection attributes have a default before the connection is made, while others do not. Those that
do are SQL_ATTR_ACCESS_MODE, SQL_ATTR_AUTOCOMMIT, SQL_ATTR_LOGIN_TIMEOUT,
SQL_ATTR_ODBC_CURSORS, SQL_ATTR_TRACE, and SQL_ATTR_TRACEFILE.

The translation connection attributes (SQL_ATTR_TRANSLATE_DLL and SQL_ATTR_TRANSLATE_OPTION)
must be set after connecting.

All other connection attributes can be set at any time.

5.2 Descriptors

A descriptor handle refers to a data structure that holds information about either columns or dynamic
parameters.

ODBC functions that operate on column and parameter data implicitly set and retrieve descriptor fields.
For instance, when SQLBindCol is called to bind column data, it sets descriptor fields that completely
describe the binding. When SQLColAttribute is called to describe column data, it returns data stored in
descriptor fields.

An application calling ODBC functions need not concern itself with descriptors. No database operation
requires that the application gain direct access to descriptors. However, for some applications, gaining
direct access to descriptors streamlines many operations. For example, direct access to descriptors
provides a way to rebind column data, which can be more efficient than calling SQLBindCol again.

Note: The physical representation of the descriptor is not defined. Applications gain direct access to a
descriptor only by manipulating its fields by calling ODBC functions with the descriptor handle.

See also:

Types of Descriptors

ODBC Reference Topics 177

Copyright © 1982-2024 R:BASE Technologies, Inc.

5.2.1 Types of Descriptors

A descriptor is used to describe one of the following:

· A set of zero or more parameters. A parameter descriptor can be used to describe:
· The application parameter buffer, which contains either the input dynamic arguments as set by

the application or the output dynamic arguments following the execution of a CALL statement of
SQL.

· The implementation parameter buffer. For input dynamic arguments, this contains the same
arguments as the application parameter buffer, after any data conversion the application may
specify. For output dynamic arguments, this contains the returned arguments, before any data
conversion that the application may specify.

For input dynamic arguments, the application must operate on an application parameter descriptor
before executing any SQL statement that contains dynamic parameter markers. For both input and
output dynamic arguments, the application can specify different data types from those in the
implementation parameter descriptor to achieve data conversion.

· A single row of database data. A row descriptor can be used to describe:
· The implementation row buffer, which contains the row from the database. (These buffers

conceptually contain data as written to or read from the database. However, the stored form of
database data is not specified. A database could perform additional conversion on the data from
its form in the implementation buffer.)

· The application row buffer, which contains the row of data as presented to the application,
following any data conversion that the application may specify.

The application operates on the application row descriptor in any case where column data from the
database must appear in application variables. To achieve data conversion of column data, the
application can specify different data types from those in the implementation row descriptor.

The descriptor types are summarized in the following table.

Buffer type Rows Dynamic parameters

Application buffer Application row descriptor (ARD) Application parameter descriptor (APD)

Implementation
buffer

Implementation row descriptor
(IRD)

Implementation parameter descriptor (IPD)

For either the parameter or the row buffers, if the application specifies different data types in
corresponding records of the implementation and application descriptors, the driver performs data
conversion when it uses the descriptors.

A descriptor can perform different roles. Different statements can share any descriptor that the
application explicitly allocates. A row descriptor in one statement can serve as a parameter descriptor in
another statement.

It is always known whether a given descriptor is an application descriptor or an implementation
descriptor, even if the descriptor has not yet been used in a database operation. For the descriptors that
the implementation implicitly allocates, the implementation records the predefined row relative to the
statement handle. Any descriptor that the application allocates by calling SQLAllocHandle is an application
descriptor.

5.3 Handles

Handles are opaque, 32-bit values that identify a particular item; in ODBC, this item can be an
environment, connection, statement, or descriptor. When the application calls SQLAllocHandle, the Driver
Manager or driver creates a new item of the specified type and returns its handle to the application. The
application later uses the handle to identify that item when calling ODBC functions. The Driver Manager
and driver use the handle to locate information about the item.

For example, the following code uses two statement handles (hstmtOrder and hstmtLine) to identify the
statements on which to create result sets of sales orders and sales order line numbers. It later uses
these handles to identify which result set to fetch data from.

Oterro 11 Help Manual178

Copyright © 1982-2024 R:BASE Technologies, Inc.

SQLHSTMT hstmtOrder, hstmtLine; // Statement handles.
SQLUINTEGER OrderID;
SQLINTEGER OrderIDInd = 0;
SQLRETURN rc;

// Prepare the statement that retrieves line number information.
SQLPrepare(hstmtLine, "SELECT * FROM Lines WHERE OrderID = ?", SQL_NTS);

// Bind OrderID to the parameter in the preceding statement.
SQLBindParameter(hstmtLine, 1, SQL_PARAM_INPUT, SQL_C_ULONG,
SQL_INTEGER, 5, 0,
 &OrderID, 0, &OrderIDInd);

// Bind the result sets for the Order table and the Lines table. Bind
// OrderID to the OrderID column in the Orders table. When each row is
// fetched, OrderID will contain the current order ID, which will then
be
// passed as a parameter to the statement tofetch line number
// information. Code not shown.

// Create a result set of sales orders.
SQLExecDirect(hstmtOrder, "SELECT * FROM Orders", SQL_NTS);

// Fetch and display the sales order data. Code to check if rc equals
// SQL_ERROR or SQL_SUCCESS_WITH_INFO not shown.
while ((rc = SQLFetch(hstmtOrder)) != SQL_NO_DATA) {
 // Display the sales order data. Code not shown.

 // Create a result set of line numbers for the current sales order.
 SQLExecute(hstmtLine);

 // Fetch and display the sales order line number data. Code to check
 // if rc equals SQL_ERROR or SQL_SUCCESS_WITH_INFO not shown.
 while ((rc = SQLFetch(hstmtLine)) != SQL_NO_DATA) {
 // Display the sales order line number data. Code not shown.
 }

 // Close the sales order line number result set.
 SQLCloseCursor(hstmtLine);
}

// Close the sales order result set.
SQLCloseCursor(hstmtOrder);

Handles are meaningful only to the ODBC component that created them; that is, only the Driver Manager
can interpret Driver Manager handles and only a driver can interpret its own handles.

For example, suppose the driver in the preceding example allocates a structure to store information
about a statement and returns the pointer to this structure as the statement handle. When the application
calls SQLPrepare, it passes an SQL statement and the handle of the statement used for sales order line
numbers. The driver sends the SQL statement to the data source, which prepares it and returns an
access plan identifier. The driver uses the handle to find the structure in which to store this identifier.

ODBC Reference Topics 179

Copyright © 1982-2024 R:BASE Technologies, Inc.

Later, when the application calls SQLExecute to generate the result set of line numbers for a particular
sales order, it passes the same handle. The driver uses the handle to retrieve the access plan identifier
from the structure. It sends the identifier to the data source to tell it which plan to execute.

ODBC has two levels of handles: Driver Manager handles and driver handles. The application uses Driver
Manager handles when calling ODBC functions because it calls those functions in the Driver Manager.

That there are two levels of handles is an artifact of the ODBC architecture; in most cases, it is not
relevant to either the application or driver. Although there is usually no reason to do so, it is possible for
the application to determine the driver handles by calling SQLGetInfo.

See also:

Environment Handles
Connection Handles
Statement Handles
Descriptor Handles
State Transitions

5.3.1 Environment Handles

An environment is a global context in which to access data; associated with an environment is any
information that is global in nature, such as:

· The environment's state
· The current environment-level diagnostics
· The handles of connections currently allocated on the environment
· The current settings of each environment attribute

Within a piece of code that implements ODBC (the Driver Manager or a driver), an environment handle
identifies a structure to contain this information.

Environment handles are not frequently used in ODBC applications. They are always used in calls to
SQLDataSources and SQLDrivers and sometimes used in calls to SQLAllocHandle, SQLEndTran,
SQLFreeHandle, and SQLGetDiagRec.

Each piece of code that implements ODBC (the Driver Manager or a driver) contains one or more
environment handles. For example, the Driver Manager maintains a separate environment handle for
each application that is connected to it. Environment handles are allocated with SQLAllocHandle and freed
with SQLFreeHandle.

5.3.2 Connection Handles

A connection consists of a driver and a data source. A connection handle identifies each connection. The
connection handle defines not only which driver to use but which data source to use with that driver.
Within a segment of code that implements ODBC (the Driver Manager or a driver), the connection handle
identifies a structure that contains connection information, such as the following:

· The state of the connection
· The current connection-level diagnostics
· The handles of statements and descriptors currently allocated on the connection
· The current settings of each connection attribute

ODBC does not prevent multiple simultaneous connections, if the driver supports them. Therefore, in a
particular ODBC environment, multiple connection handles might point to a variety of drivers and data
sources, to the same driver and a variety of data sources, or even to multiple connections to the same
driver and data source. Some drivers limit the number of active connections they support; the
SQL_MAX_DRIVER_CONNECTIONS option in SQLGetInfo specifies how many active connections a
particular driver supports.

Connection handles are primarily used when connecting to the data source (SQLConnect,
SQLDriverConnect, or SQLBrowseConnect), disconnecting from the data source (SQLDisconnect), getting

Oterro 11 Help Manual180

Copyright © 1982-2024 R:BASE Technologies, Inc.

information about the driver and data source (SQLGetInfo), retrieving diagnostics (SQLGetDiagRec), and
performing transactions (SQLEndTran). They are also used when setting and getting connection attributes
(SQLSetConnectAttr and SQLGetConnectAttr) and when getting the native format of an SQL statement
(SQLNativeSql).

Connection handles are allocated with SQLAllocHandle and freed with SQLFreeHandle.

5.3.3 Statement Handles

A statement is most easily thought of as an SQL statement, such as SELECT * FROM Employee. However,
a statement is more than just an SQL statement — it consists of all of the information associated with that
SQL statement, such as any result sets created by the statement and parameters used in the execution
of the statement. A statement does not even need to have an application-defined SQL statement. For
example, when a catalog function such as SQLTables is executed on a statement, it executes a
predefined SQL statement that returns a list of table names.

Each statement is identified by a statement handle. A statement is associated with a single connection,
and there can be multiple statements on that connection. Some drivers limit the number of active
statements they support; the SQL_MAX_CONCURRENT_ACTIVITIES option in SQLGetInfo specifies how
many active statements a driver supports on a single connection. A statement is defined to be active if it
has results pending, where results are either a result set or the count of rows affected by an INSERT,
UPDATE, or DELETE statement, or data is being sent with multiple calls to SQLPutData.

Within a piece of code that implements ODBC (the Driver Manager or a driver), the statement handle
identifies a structure that contains statement information, such as:

· The statement's state
· The current statement-level diagnostics
· The addresses of the application variables bound to the statement's parameters and result set

columns
· The current settings of each statement attribute

Statement handles are used in most ODBC functions. Notably, they are used in the functions to bind
parameters and result set columns (SQLBindParameter and SQLBindCol), prepare and execute
statements (SQLPrepare, SQLExecute, and SQLExecDirect), retrieve metadata (SQLColAttribute and
SQLDescribeCol), fetch results (SQLFetch), and retrieve diagnostics (SQLGetDiagRec). They are also
used in catalog functions (SQLColumns, SQLTables, and so on) and a number of other functions.

Statement handles are allocated with SQLAllocHandle and freed with SQLFreeHandle.

5.3.4 Descriptor Handles

A descriptor is a collection of metadata that describes the parameters of an SQL statement or the
columns of a result set, as seen by the application or driver (also known as the implementation). Thus, a
descriptor can fill any of four roles:

· Application Parameter Descriptor (APD). Contains information about the application buffers bound to
the parameters in an SQL statement, such as their addresses, lengths, and C data types.

· Implementation Parameter Descriptor (IPD). Contains information about the parameters in an SQL
statement, such as their SQL data types, lengths, and nullability.

· Application Row Descriptor (ARD). Contains information about the application buffers bound to the
columns in a result set, such as their addresses, lengths, and C data types.

· Implementation Row Descriptor (IRD). Contains information about the columns in a result set, such
as their SQL data types, lengths, and nullability.

Four descriptors (one filling each role) are allocated automatically when a statement is allocated. These
are known as automatically allocated descriptors and are always associated with that statement.
Applications can also allocate descriptors with SQLAllocHandle. These are known as explicitly allocated
descriptors. They are allocated on a connection and can be associated with one or more statements on
that connection to fulfill the role of an APD or ARD on those statements.

Most operations in ODBC can be performed without explicit use of descriptors by the application.
However, descriptors provide a convenient shortcut for some operations. For example, suppose an

ODBC Reference Topics 181

Copyright © 1982-2024 R:BASE Technologies, Inc.

application wants to insert data from two different sets of buffers. To use the first set of buffers, it would
repeatedly call SQLBindParameter to bind them to the parameters in an INSERT statement and then
execute the statement. To use the second set of buffers, it would repeat this process. Alternatively, it
could set up bindings to the first set of buffers in one descriptor and to the second set of buffers in
another descriptor. To switch between the sets of bindings, the application would simply call
SQLSetStmtAttr and associate the correct descriptor with the statement as the APD.

5.3.5 State Transitions

ODBC defines discrete states for each environment, each connection, and each statement. For example,
the environment has three possible states: Unallocated (in which no environment is allocated), Allocated
(in which an environment is allocated but no connections are allocated), and Connection (in which an
environment and one or more connections are allocated). Connections have seven possible states;
statements have 13 possible states.

A particular item, as identified by its handle, moves from one state to another when the application calls
a certain function or functions and passes the handle to that item. Such movement is called a state
transition. For example, allocating an environment handle with SQLAllocHandle moves the environment
from Unallocated to Allocated, and freeing that handle with SQLFreeHandle returns it from Allocated to
Unallocated. ODBC defines a limited number of legal state transitions, which is another way of saying
that functions must be called in a certain order.

Some functions, such as SQLGetConnectAttr, do not affect state at all. Other functions affect the state of
a single item. For example, SQLDisconnect moves a connection from a Connection state to an Allocated
state. Finally, some functions affect the state of more than one item. For example, allocating a connection
handle with SQLAllocHandle moves a connection from an Unallocated to an Allocated state and moves the
environment from an Allocated to a Connection state.

If an application calls a function out of order, the function returns a state transition error. For example, if
an environment is in a Connection state and the application calls SQLFreeHandle with that environment
handle, SQLFreeHandle returns SQLSTATE HY010 (Function sequence error), because it can be called
only when the environment is in an Allocated state. By defining this as an invalid state transition, ODBC
prevents the application from freeing the environment while there are active connections.

Some state transitions are inherent in the design of ODBC. For example, it is not possible to allocate a
connection handle without first allocating an environment handle, because the function that allocates a
connection handle requires an environment handle. Other state transitions are enforced by the Driver
Manager and the drivers. For example, SQLExecute executes a prepared statement. If the statement
handle passed to it is not in a Prepared state, SQLExecute returns SQLSTATE HY010 (Function sequence
error).

From the application's point of view, state transitions are usually straightforward: Legal state transitions
tend to go hand-in-hand with the flow of a well-written application. State transitions are more complex for
the Driver Manager and the drivers because they must track the state of the environment, each
connection, and each statement. Most of this work is done by the Driver Manager; most of the work that
must be done by drivers occurs with statements with pending results.

5.4 Multithreading

On multithread operating systems, drivers must be thread-safe. That is, it must be possible for
applications to use the same handle on more than one thread. How this is achieved is driver-specific, and
it is likely that drivers will serialize any attempts to concurrently use the same handle on two different
threads.

Applications commonly use multiple threads instead of asynchronous processing. The application creates
a separate thread, calls an ODBC function on it, and then continues processing on the main thread.
Rather than having to continually poll the asynchronous function, as is the case when the
SQL_ATTR_ASYNC_ENABLE statement attribute is used, the application can simply let the newly created
thread finish.

Functions that accept a statement handle and are running on one thread can be canceled by calling
SQLCancel with the same statement handle from another thread. Although drivers should not serialize

Oterro 11 Help Manual182

Copyright © 1982-2024 R:BASE Technologies, Inc.

the use of SQLCancel in this manner, there is no guarantee that calling SQLCancel will actually cancel the
function running on the other thread.

Part

VI

Oterro 11 Help Manual184

Copyright © 1982-2024 R:BASE Technologies, Inc.

6 R:BASE Database Commands

This chapter provides general reference information about Oterro Database commands, syntax
diagrams, and examples of their usage. Entries are listed in alphabetical order.

The commands and the examples provided are described as stand-alone commands. All must be
executed as SQL statements through the function calls SQLExecDirect, SQLExecute, or the DBA utility.
When using SQLExecDirect or SQLExecute, the commands must be passed through the functions as
character strings. The discussions and examples provided are simplified by not specifying the exact API
function syntax. Since these commands are executed through the SQLExecDirect, or SQLExecute
functions, an Oterro database must be connected before the command is sent

6.1 Reading Command Syntax

A command syntax is read from left to right, and the required parts of the command syntax form a main
line. When a required part of a command can vary, brackets are drawn around the available choices and
the main line of the command connects with the information in brackets. The optional portion of a
command appears below the main line. The following is an example of a command syntax:

The required parts of the above command are the command keywords UPDATE and SET, the column to
be modified, and the new value, expression (expression), or constant. The table name is usually
specified, but when left out, the command updates the column in all tables where the column appears. A
WHERE clause is optional and allows you to limit rows of data for the command.

Text Objects in the Command Syntax Diagram

· Keywords, which are uppercase, tell R:BASE what to do.
· Arguments, which are lowercase, represent specific information that you provide, such as a table

name, column name, variable name, or expression.

Graphical Parts of the Command Syntax Diagram

An arrow in a command syntax indicates what portion of the command can be repeated. Each part of the
command that is repeated must be separated with a comma, or the current delimiter character.

Ellipses indicate that the syntax continues to the next line.

R:BASE Database Commands 185

Copyright © 1982-2024 R:BASE Technologies, Inc.

If you have a choice of keyword or argument to use, the choices are enclosed in brackets.

This is the main line of the syntax. Any keywords or arguments on the main line are required.

This part of the syntax is below the main line and is therefore optional.

The Oterro database reserves some keywords for its use—do not use those keywords for column, table,
or view names. For a list of reserved words, see Reserved Words.

6.2 Command Categories

Configuration
AUTONUM SET

Control Structures
BREAK CONTINUE GOTO IF/ENDIF

LABEL SWITCH/ENDSW WHILE/ENDWHILE

File Access
ATTACH DETACH SATTACH SCONNECT

SDETACH SDISCONNECT

SQL / Query Language
ALTER TABLE APPEND CLOSE COMMENT ON

CREATE INDEX CREATE SCHEMA CREATE TABLE CREATE VIEW

DELETE DELETE DUPLICATES DECLARE CURSOR DROP

FETCH GRANT INSERT LOAD

OPEN ORDER BY PROJECT RENAME

REVOKE RULES SELECT UPDATE

WHERE GROUP BY HAVING

Output Devices
OUTPUT

Stored Procedures
CALL GET PUT

Utilities
AUTOCHK CONVERT LAUNCH MIGRATE

PACK RELOAD TURBO UNLOAD

Variable Handling
CLEAR SET STATICVAR SET VARIABLE

6.3 A

6.3.1 ALTER TABLE

Use the ALTER TABLE command to modify an existing table.

Oterro 11 Help Manual186

Copyright © 1982-2024 R:BASE Technologies, Inc.

Options

,
Indicates that this part of the command is repeatable.

R:BASE Database Commands 187

Copyright © 1982-2024 R:BASE Technologies, Inc.

ADD
Specifies the column and its definition, or a table constraint to add.

ADD CASCADE
Maintains primary/foreign key relationships automatically. For example, if you either UPDATE or DELETE
a primary key value from a table, the corresponding foreign key values are updated or deleted
automatically. A CASCADE can be applied to UPDATE, DELETE or BOTH to specific primary keys. By not
specifying either UPDATE or DELETE, both CASCADE restrictions will be enforced upon the
primary/foreign key tables. Separate UPDATE and DELETE data restrictions can allow a CASCADE to be
enforced for records that are updated, but not enforced when records are deleted, in order to avoid an
accidental or undesired record delete. CASCADE can only be added to tables with primary keys.

ADD TRIGGER
Adds the specified triggers to the table. Triggers run a Stored Procedure when an UPDATE, DELETE, or
INSERT is executed. If you are using BEFORE and AFTER triggers, BOTH must be ADDed at the same
time.

AFTER
Specifies the AFTER trigger event to activate or drop the INSERT, UPDATE or DELETE action.

ALTER
Modifies a column definition.

BEFORE
Specifies the BEFORE trigger event to activate or drop the INSERT, UPDATE or DELETE action. This is the
default setting when creating a trigger, if the BEFORE/AFTER parameter is unused.

CASE
Specifies that the data values will be case sensitive.

CHECK (condition)
Sets a condition to be satisfied before an update or insertion of a row can occur, which creates an
R:BASE rule.

(collist)
Specifies a list of one or more column names, separated by a comma (or the current delimiter), used in
the unique key specification. This option is only used when referencing a unique key.

colname
Specifies a column name. The column name is limited to 128 characters.

COLUMN
Specifies the column to add, drop, or alter.

conname
Specifies a constraint name.

datatype
Specifies an R:BASE data type.

DEFAULT
Specifies a default value for the column if no value is provided by the user.

DROP
Removes a column or a constraint. A column, including both its structure and data, is removed from the
table. Dropping a constraint removes a primary key, foreign key, unique key, or a not-null constraint.

DROP CASCADE
Disables the CASCADE feature so that primary/foreign key relationships are not maintained
automatically.

DROP CONSTRAINT
Removes a constraint.

Oterro 11 Help Manual188

Copyright © 1982-2024 R:BASE Technologies, Inc.

DROP DEFAULT
Removes a column's default value.

DROP TRIGGER
Drops triggers from a table. If the INSERT, UPDATE, or DELETE actions is not specified, all triggers are
dropped from the table. If the BEFORE or AFTER events are not specified for an INSERT, UPDATE, or
DELETE action, both BEFORE and AFTER triggers for the specified action are dropped from the table.

= (expression)
Determines a value using a text or arithmetic formula. The expression can include other columns from
the table, constant values, functions, or system variables such as #date, #time, and #pi.

(<FKMSG>)
Creates a constraint violation message to appear whenever a foreign-key data integrity violation occurs.
The message can suit the meaning of your data, such as "You must enter a valid number" for a foreign-
key constraint violation. You can define two messages: one for inserting and one for updating. A
constraint must be dropped, then recreated in order to modify the violation message.

FOREIGN INDEX
With the FASTFK setting on, creates a foreign key that has an index using row pointers for data retrieval
on selected columns.

FOREIGN KEY
Specifies a column or set of columns required to match values in a particular primary key or unique key
constraint defined in a table.

FOREIGN KEY (collist)
If (collist) comprises one column, this option is equivalent to FOREIGN KEY. If two or more columns are
included in (collist), the values in the listed columns must be unique as a group in each row. Each column
must be separated by a comma (or the current delimiter).

(<NNMSG>)
Creates a constraint violation message to appear whenever a not-null data integrity violation occurs. The
message can suit the meaning of your data, such as "You must enter a valid number" for a not-null
constraint violation. A constraint must be dropped, then recreated in order to modify the violation
message.

NOCHECK
Optional NOCHECK parameter does not update references to views, tables, and columns in forms,
reports, labels, access rights, and rules. In this case, user assumes the responsibilities to update any
references to views, tables, and columns in forms, reports, labels, access rights, and rules. This condition
is ONLY available for the ALTER COLUMN command.

NOT NULL
Prevents a column from accepting null values, but permits it to accept duplicate values. If this option is
specified without a setting for a default value, you cannot insert rows without specifying values for the
given column.

(<PKMSG>)
Creates a constraint violation message to appear whenever a primary-key data integrity violation occurs.
The message can suit the meaning of your data, such as "You must enter a valid number" for a primary-
key constraint violation. You can define three messages: one for uniqueness, one for deleting, and one
for updating. A constraint must be dropped, then recreated in order to modify the violation message.

PRIMARY KEY
Specifies the column(s) to designate as a primary key constraint.

PRIMARY KEY (collist)
If (collist) comprises one column, this option is equivalent to PRIMARY KEY. If two or more columns are
included in (collist), the values in the listed columns must be unique as a group in each row. Only
columns defined as not null can be included in (collist). Each column must be separated by a comma (or
the current delimiter).

procname
The procedure name. If a procedure by this name already exists in the database, an error is generated.

R:BASE Database Commands 189

Copyright © 1982-2024 R:BASE Technologies, Inc.

REFERENCES
Identifies the primary key or unique key table to which the foreign key refers.

SET DEFAULT
Changes a column's default value.

(size)
Defines the length of a column of the TEXT data type (if not the default 8). Defines the precision and
scale of a column of the DECIMAL or NUMERIC data type, if not the default of precision 9 and scale 0
(9,0). VARBIT, VARCHAR, and BIT either require or can have a size.

tblname
Specifies a table name. The table name is limited to 128 characters.

(<UMSG>)
Creates a constraint violation message to appear whenever a unique-key data integrity violation occurs.
The message can suit the meaning of your data, such as "You must enter a valid number" for a unique-
key constraint violation. You can define three messages: one for uniqueness, one for deleting, and one
for updating. A constraint must be dropped, then recreated in order to modify the violation message.

UNIQUE
Requires the values in a column to be unique by creating a unique key constraint.

UNIQUE (collist)
If (collist) is one column, this option is equivalent to UNIQUE. If two or more columns are included in
(collist), the values in the listed columns must be unique as a group in each row. Only columns defined as
not null can be included in (collist). Each column must be separated by a comma (or the current
delimiter).

USER
NULL
(value)
Default USER: Specifies the default value to be the user identifier.
Default NULL: Specifies the default value to be null.
Default (value): Specifies the default to be the indicated value.

About the ALTER TABLE Command

ALTER TABLE creates a temporary internal table by copying a table's structure and data. You must have
enough disk space to hold another copy of a table, and your database should not exceed the number of
tables and columns R:BASE allows, which includes user-defined tables and system tables.

After the ALTER TABLE command has been executed, the temporary table goes away; however, the disk
space the temporary table occupied is not available. To recover this space, pack or reload the database
using the PACK or RELOAD commands.

Adding Columns

When you add a new column to a database, specify the name, data type, and length when the data type
for the column is TEXT, or precision and scale when the data type for the column is DECIMAL or
NUMERIC. When the column is computed, specify the name and expression-a data type is optional. When
the column already exists in the database, specify only the name-R:BASE uses the existing data type,
and length, if applicable.

Database Access Rights with ALTER TABLE

When access rights for a table or view have been assigned using the GRANT command, ALTER TABLE
requires the database owner's user-identifier or permission from the owner to alter specific tables.

Limitations of the ALTER TABLE Command

You cannot assign an index to a new column or transfer the index of an existing column with ALTER
TABLE. If the added column should be indexed, use the CREATE INDEX command.

Oterro 11 Help Manual190

Copyright © 1982-2024 R:BASE Technologies, Inc.

You also cannot add or transfer rules with ALTER TABLE. If you want a rule to apply to a column in the
table, you must add it with the RULES command or use the Database Designer.

You cannot use ALTER TABLE to modify a view.

You cannot add a foreign key to a temporary table.

Examples

The following command adds mailadrs, a TEXT column 40 characters wide, at the end (or far right) of the
customer table.

ALTER TABLE customer ADD mailadrs TEXT (40)

The following command adds the profit column at the end of product table. The value of profit is
computed from the current row values for listprice multiplied by 1.05. The data type specified is REAL.

ALTER TABLE product ADD profit=(listprice * 1.05) REAL

The following command adds an "update only" cascade to the employee table.

ALTER TABLE employee ADD CASCADE UPDATE

The following command defines columns one through three as a case-sensitive primary key. Before you
use this command, you must add a not-null constraint to each of the columns.

ALTER TABLE tablename ADD PRIMARY KEY CASE (column1, column2, column3) ('This is a
message from the primary key')

The following command line adds a foreign index to the custidcolumn and references the primary key in
the customer table.

ALTER TABLE transmaster ADD FOREIGN INDEX (custid) REFERENCES customer

The following command drops the before insert trigger in the InvoiceHeader table.

ALTER TABLE InvoiceHeader DROP TRIGGER INSERT BEFORE

The following command line adds the test trigger for the SampleTriggers Table.

DROP PROCEDURE MySampleTrigger
PUT AFTER.PRC AS MySampleTrigger
ALTER TABLE SampleTriggers ADD TRIGGER INSERT AFTER MySampleTrigger
RETURN

6.3.2 APPEND

Use the APPEND command to copy rows from a table or view to the end of a table.

Options

tblview
Names the table or view from which you want to copy rows-the source.

TO tblname
The name of the table to which you want to copy rows-the destination.

R:BASE Database Commands 191

Copyright © 1982-2024 R:BASE Technologies, Inc.

WHERE clause
Limits rows of data. For more information, see WHERE.

About the APPEND Command

R:BASE only copies values from the source table or view that have matching column names in the
destination table. Columns in the destination table that are not in the source table or view are filled with
null values.

Rows are copied, not removed, from the source.

Example

The following command adds the rows containing new employee information from the newemp table to
the end of emptable, a table containing information about previous employees. A WHERE clause is not
specified, so all rows are copied to emptable.

APPEND newemp TO emptable

6.3.3 ATTACH

Use the ATTACH command to attach a dBASE file to an open R:BASE database.

Options

ALIAS AliasList
To specify alias names for columns.

AS tablealias
Specifies an alias, or temporary name, for the dBASE table. A table alias is sometimes required when
attaching files that do not follow the same table name restrictions as R:BASE.

filespec
A dBASE database name with a drive and path specification in the form D:\PATHNAME\FILENAME.

ndxlist
Specifies a list of index files to associate with the specified dBASE file. You do not have to include the
extension for each index file. Separate index file names with a comma (or the current delimiter). Index
files must be located with the specified dBASE file.

TEMPORARY
Allows you to create a temporary table with the ATTACH command. The temporary tables will disappear
when the database is disconnected.

USING
Removes dBASE index files that were previously associated with the attached dBASE file when this option
is used without a list of index files.

About the ATTACH Command

Before you can attach a dBASE file, an R:BASE database must be open. You can open an existing
database or use the CREATE SCHEMA command to create a database.

Include the file specification when the file is located on a different drive or directory. You do not have to
include the .DBF extension for the dBASE file.

R:BASE directly reads and writes dBASE III and dBASE III PLUS data and index files. R:BASE can also
read and write dBASE IV data files and index files that have the .NDX extension, just as dBASE III and

Oterro 11 Help Manual192

Copyright © 1982-2024 R:BASE Technologies, Inc.

dBASE III PLUS can share files with dBASE IV. R:BASE cannot read encrypted files nor read and write to
dBASE IV index files, which have .MDX extensions.

Attaching to dBASE Files from a Network

From a network, R:BASE, dBASE III, and dBASE III PLUS users can access the same file at the same
time. R:BASE can lock a dBASE file just as dBASE III and dBASE III PLUS can lock a dBASE file. When
R:BASE is in multi-user mode, it does not support dBASE IV use. When a dBASE IV file is open by
dBASE, R:BASE cannot access that file; when R:BASE attaches to a dBASE IV file, that file cannot be
accessed by dBASE IV.

Listing dBASE Files

Use the LIST command to list the dBASE files in an R:BASE database. R:BASE displays DBF in the Rows
column to indicate a dBASE file.

Reattaching dBASE Files to R:BASE

A dBASE file stays attached unless you use the DETACH command, which removes a dBASE file and its
associated index file from the R:BASE database. The dBASE files stay attached because R:BASE
remembers the attached dBASE files and index files when you open a database. At that time, R:BASE
searches the current directory and path to find the attached dBASE file; therefore, the location of the
dBASE files must be included in your path.

Associating and Modifying dBASE Index Files

You can associate a maximum of seven dBASE index files, which have .NDX extensions, with a dBASE
data file by using the ndxlist option. R:BASE remembers each index file you associate with the dBASE
data file. Also, use the ndxlist option to modify or preserve a set of indexes. If you issue another
ATTACH command with a list of index files, R:BASE removes the current index files from the dBASE data
file and associates the new list with the dBASE data file.

R:BASE updates the information stored in the dBASE data and index files each time you add or edit
information in a dBASE file.

R:BASE Commands that Work with dBASE

The following R:BASE commands work with dBASE files. Limitations are noted following the table.

Commands that Work with dBASE

ATTACH DROP LABEL LIST CURSORS RENAME FORM

BROWSE DROP REPORT LIST DATABASES RENAME OWNER

CHOOSE DROP RULE LIST FORMS RENAME REPORT

COMMENT ON DROP TABLE LIST LABELS RENAME VIEW

COMMIT (4) DROP VIEW LIST REPORTS REPORTS

COMPUTE EDIT LIST RULES REVOKE

CONNECT EDIT DISTINCT LIST TABLES ROLLBACK (4)

CONTINUE EDIT USING LIST VIEWS RULES

CREATE VIEW ENTER USING LOAD SELECT

CROSSTAB FETCH OPEN CURSOR SET

DECLARE CURSOR FUNCTIONS PACK (1) SHOW

DELETE GRANT PRINT TALLY

DELETE DUPLICATES INSERT INTO PROJECT (2) UNLOAD (3)

DETACH LBLPRINT QUERY UPDATE

DISCONNECT LIST ACCESS RBLABELS WHENEVER

DROP CURSOR LIST ALL RELOAD ZIP

DROP FORM LIST COLUMNS RENAME COLUMN

R:BASE Database Commands 193

Copyright © 1982-2024 R:BASE Technologies, Inc.

Notes:

· dBASE files are not affected when you use a PACK command.

· Using the PROJECT command, you can create a new table from an existing table from dBASE to
R:BASE, but not from R:BASE to dBASE.

· You can unload dBASE tables as ASCII only.

· You cannot modify dBASE tables when transaction processing is on.

· dBASE memo fields can be 64K in size. If the dBASE memo field is larger than 4K (the maximum
size of an R:BASE note column), R:BASE reads as much as will fit. If you make changes and then
write the record back to dBASE, the existing dBASE memo field is overwritten. The Carriage Return
and Line Feed characters in dBASE are mapped to [Alt] + [0255].

R:BASE Commands that Do Not Work with dBASE

The following commands do not work with dBASE files in R:BASE.

Commands that Do Not Work with dBASE

ALTER TABLE * CREATE INDEX ON JOIN

APPEND CREATE SCHEMA AUTHOR RENAME TABLE

AUTONUM CREATE TABLE RESTORE

BACKUP ALL DROP COLUMN SUBTRACT

BACKUP DATA DROP INDEX UNION

BACKUP STRUCTURE INTERSECT

* Column names for dBASE files can be changed with ALTER TABLE.

Example

In the following example, the first command opens the concomp database. The second command
attaches the dBASE file SAMPGATE to the concomp database and associates the dBASE index files
COMPID and PRODDESC with the R:BASE file table sampgate.

CONNECT concomp
ATTACH sampgate USING compid, proddesc

6.3.4 AUTOCHK

Use the AUTOCHK command to check the integrity of a database. AUTOCHK can be used when connected
or disconnected from the database.

Options

dbspec
Specifies a database other than the open database to check; otherwise, the open database is checked.

FULL
Provides detailed information about the processing being performed, and when AUTOCHK encounters an
error, it continues processing.

Oterro 11 Help Manual194

Copyright © 1982-2024 R:BASE Technologies, Inc.

About the AUTOCHK Command

Use the AUTOCHK command to ensure that the connected database is intact before using the PACK or
RELOAD commands, or before making a backup of the database with either the BACKUP or COPY
commands.

Please Note: If any user connected to the database has temporary tables or views created you may
receive an abnormal amount of errors. This is expected and is a side effect of having temporary tables
active during the check. For completely accurate results, have all users disconnect from the database to
be checked.

AUTOCHK checks the following:

· The structure-file block sizes and locations.
· The timestamps for all database files.
· The database-file lengths.
· The number of tables and columns.
· The starting and ending pointers for tables.
· The location of columns.
· The File 4 data pointers.
· The data types of columns.
· The size and number of rows in each table.
· The row pointers in the data file.

AUTOCHK does not check indexes.

When you run AUTOCHK, it systematically checks the structure file of the open database, and the data
files. AUTOCHK only checks the index file for the timestamp and length of the file. When opening a
database, AUTOCHK ignores any user-identifier protection. AUTOCHK without the FULL option sets the
R:BASE error variable to a non-zero value if errors are found.

The results of AUTOCHK with the FULL option are displayed on screen, or the current output device. First,
AUTOCHK validates the timestamps in the database files, then systematically checks the structure of
each table and view in the database, providing a list of columns, constraints, and indexes for each. Any
structure errors are noted after each table listing.

Database Statistics

Next, AUTOCHK checks the data for each table, listing active rows and deleted rows. Any problems with
data, such as broken pointers, are listed after the respective tables. Finally, AUTOCHK provides a
summary of the database structure, including the number of tables, columns, and indexes, and the actual
space that the data occupies in the data file (File 2). AUTOCHK shows the percent of space used for the
items in each list to give an idea of how much space has been used, and to indicate the need to recover
space in the database files. Any numbers less than 100 percent indicate the need to pack or reload the
database using the PACK or RELOAD commands.

The following section contains information about using AUTOCHK in application files and capturing the
error variables returned. This allows the application developer to prevent users from continuing to use a
corrupted database.

SET ERROR VAR E1
WRITE 'Checking database for errors...'
AUTOCHK dbname
IF E1 > 40 THEN

WRITE 'AUTOCHK has found errors in the database!'
BEEP

ENDIF
If E1 > 0 and E1 < 50 THEN

WRITE 'AUTOCHK will not run - User Abort or Out of Memory'
BEEP

ENDIF
IF E1 = 0 THEN

R:BASE Database Commands 195

Copyright © 1982-2024 R:BASE Technologies, Inc.

WRITE 'AUTOCHK successful - No errors found'
ENDIF
PAUSE 2
RETURN

If AUTOCHK with no option finds an error, it stops checking the database and displays one error
message. If the error message (see list below) indicates that the database is damaged, you might want
to start using a backup copy of the database. Alternatively, you might want to use R:SCOPE, a database
repair tool available from R:BASE Technologies, Inc.

If AUTOCHK finds no errors, it displays the message "NO ERRORS FOUND." If you press any key while
AUTOCHK is checking the database, the program stops and displays the message "USER ABORT."
AUTOCHK automatically sets the error variable to the number corresponding to the message returned.
For example, if the error "UNABLE TO OPEN DATABASE FILE 2" is returned, the error variable is set to
52.

Multi-User Databases

Use caution when running AUTOCHK in a multi-user environment. If the database being checked is
currently open with MULTI set on, AUTOCHK places a database lock on the database. The database lock
remains in effect until AUTOCHK stops checking the database. Database users are unable to make any
changes to the data or structure of the database while this lock is in place.

If a user attempts to open a database being checked by AUTOCHK and the database does not have any
other users, the user receives an error message indicating that the database is currently open in a mode
that makes it unavailable. If other users have the database open with the MULTI set on and the database
is being checked, the user attempting to open the database receives a message indicating the user is
waiting in a lock queue. If AUTOCHK successfully completes checking the database and finds no errors, it
reports that no errors were found and sets the error variable to 0.

Checking continues in multi-user mode (even if a database lock cannot be obtained) if a database is
connected by another user; however, row errors in File 2 can occur because of database activity.

Error Messages

AUTOCHK displays one of the following messages when it is unable to start checking or complete
checking the database or when it finds an error in the database files. AUTOCHK returns 0 No errors found
if the database is okay. Some of these messages indicate that the database is damaged. Either switch to
a backup copy of the database, or attempt repair of the database using R:SCOPE, R:BASE Technologies's
database repair tool. If AUTOCHK is unable to open File 1 of the database, check that the path you
specified to the database is correct; or, if you are trying a multi-user database, check that no other user
has the database connected with MULTI set off.

Checking continues in multi-user mode (even if a database lock cannot be obtained) if a database is
connected by another user; however, row errors in File 2 might occur because of database activity.

Any of these messages, except the first (code 0), indicates that the database is damaged. Either switch
to a backup copy of the database, or attempt repair of the database using R:SCOPE, R:BASE
Technologies's database repair tool.

AUTOCHK Error Messages

Number Code Message

0 No errors found

1 This database is not of the correct version

2 The database filenames must all match

20 Out of memory

40 User Abort

50 Unable to open database file number 1

51 Unable to lock this database

52 Unable to open database number 2

53 Unable to open database number 3

54 Unable to open database number 4

55 Error reading the database information block

Oterro 11 Help Manual196

Copyright © 1982-2024 R:BASE Technologies, Inc.

56 Error reading the timestamp information

57 Timestamp in file number 2 does not match file 1; run RBSYNC

58 Timestamp in file number 3 does not match file 1; run RBSYNC

59 Timestamp in file number 4 does not match file 1; run RBSYNC

60 Invalid number of tables

61 Invalid number of columns

62 Invalid number of indexes

63 File 1 is too small

70 Error in database structure block

80 Error reading the table list

81 Error reading the column list

82 Error reading the index list

100 Incorrect version flag

101 Error reading Case Folding and Collating tables

110 Error in DBinfo block offset

111 Error in DBinfo block length

120 Error in length of database file 2

121 Error in length of database file 3

Example

The following is an example of how to put AUTOCHK results in a file for viewing:

DISC
OUTPUT dbname.chk
AUTOCHK dbname FULL
OUTPUT SCREEN

You can view DBNAME.CHK in the Text Editor to view the results.

6.3.5 AUTONUM

Use the AUTONUM command to define, modify, or remove an autonumber formula from a column.

Options

colname
Specifies a column name. The column name is limited to 128 characters.

In a command, you can enter #c, where #c is the column number shown when the columns are listed
with the LIST TABLES command.

DELETE
Removes a column's autonumber formula.

format

R:BASE Database Commands 197

Copyright © 1982-2024 R:BASE Technologies, Inc.

Defines the format in which values are displayed. This option is used only for columns with the TEXT data
type.
You can use the following formatting characters:

Formatting Character Result

9 Specify a numeric digit; leading zeros are suppressed.

0 Specify a numeric digit; leading zeros are displayed.

. (period) Aligns digits along a decimal point.

[] (square brackets) Encloses literal text.

For example, if the format is [MX]9999 and the numeric value is 123, the value entered will be MX123.

IN tblname
Specifies the table in which to autonumber the column.

increment
Specifies the value of the increment as each new row is added to the table. The default increment is 1.

NONUM
Leaves existing values unchanged and assigns autonumbered values to new rows as they are added to
the table. NONUM is the default option.

NUM
Renumbers all the existing values in the column defined as an autonumbered column.

ORDER BY clause
Sorts rows of data. The ORDER BY clause is only used with the NUM option.

USING startnum
Defines or redefines the formula for an autonumber column. You must specify a starting value.
Optionally, you can specify an increment, and for columns with the TEXT data type, a display format. For
a column in a table that contains values, you can either renumber existing values or leave them as they
are.

About the AUTONUM Command

An autonumbered column ensures that each row in that column has an incremental value. For example,
use an autonumbered column to assign identification numbers, model numbers, or invoice numbers:

The following types of columns can be autonumbered:

· Columns that are not computed.
· Columns with DOUBLE, INTEGER, NUMERIC, REAL, or TEXT data types.

When you use the LIST command to list information about a column or table, autonumbered columns are
described as AUTONUMBER in the attributes column.

Automatic Numbering

R:BASE automatically enters values in an autonumbered column when you add rows to a table using a
form, the Data Editor, INSERT command, or LOAD command with the NUM option. When you import rows
to a table that contains an autonumber column, you can either set autonumbering off and load imported
values, or set autonumbering on and let R:BASE autonumber the values.

Capturing the Autonumbered Value

The next value for an autonumbered column can be captured for extended calculation or for display in a
form. To capture the value, use the NEXT Function.

Changing Values

You can change the values in an autonumbered column by using a form, or the UPDATE or EDIT
command. However, if you change a value in an autonumbered column, you could assign a duplicate

Oterro 11 Help Manual198

Copyright © 1982-2024 R:BASE Technologies, Inc.

number or disrupt the sequence of numbers. For more information about changing values in an
autonumbered column, see the below guidelines in Renumbering Columns Containing Data.

Renumbering Columns Containing Data

If you renumber a column that contains data, use the following guidelines to decide whether to change
the column's existing values.

Autonumber? Option to Use Conditions

Yes NUM A column exists in only one table in the database.
You can use the ORDER BY NUM clause to sort the
rows in the order in which you want them
renumbered. When you add new rows, values are
numbered in the order in which the rows are added
to the table.

No NONUM
(or do not specify)

A linking (or common) column exists in more than
one table. You will destroy the common column
values that link your tables if you renumber the
values in a linking column. R:BASE adds
autonumbered values to new rows as you add them
to the table.

Redefining Formulas

You can redefine the formula for an autonumbered column. For example, use the AUTONUM command
with the NUM option to change a column's display format from suppressing leading zeros to displaying
them. For more information about redefining formulas of an autonumbered column, see "Renumbering
Columns" earlier in this entry.

Removing Formulas

To remove an autonumber formula for a column, use the DELETE option. R:BASE removes only the
formula, not the existing values in the autonumbered column. After you remove an autonumber formula,
the user must enter values in the column as rows are added.

Autonumbering Tables Created with Relational Commands

When you create a table with the PROJECT command, R:BASE transfers an autonumbered column as a
regular column. You must define an autonumber formula for the column in the new table.

Database Access Rights with AUTONUM

When access rights for a table have been assigned using the GRANT command, AUTONUM requires either
the database owner's user identifier, or the rights to alter a table.

Examples

The following command defines an autonumber formula for the custid column in the customer table.
Existing values are renumbered starting at 100; assigned values increase by one for each row. Only use
this command for a column that meets the renumbering guidelines in the section "Renumbering Columns
Containing Data."

AUTONUM custid IN customer USING 100 1 NUM

The following command defines an autonumber formula for the model column in the product table.
Existing values are not renumbered. Values in new rows are numbered starting with 100. Assigned
values increase by one each time a row is added. The numbering format specifies that the letters MX
always precede the numeric value. The 0000 provides space for a numeric value of up to four digits.
When the value is less than four digits, R:BASE enters leading zeros.

AUTONUM model IN product USING 100 1 [MX]0000 NONUM

R:BASE Database Commands 199

Copyright © 1982-2024 R:BASE Technologies, Inc.

The following command assigns autonumbering to the empid column in the employee table. Existing
values are renumbered starting at 100; assigned values increase by one for each row. The rows are
renumbered by the employees' last and first names. Only use this command for a column that meets the
renumbering guidelines in the section "Renumbering Columns Containing Data."

AUTONUM empid IN employee USING 100 1 ORDER BY emplname, empfname NUM

The command below deletes the autonumber formula from the empidcolumn in the employee table.

AUTONUM empid IN employee DELETE

6.4 B

6.4.1 BREAK

Use the BREAK command to force an early exit from a WHILE...ENDWHILE loop or a SWITCH...ENDSW
structure.

About the BREAK Command

The BREAK command is usually run in an IF...ENDIF structure contained within a WHILE...ENDWHILE loop
or a CASE block within a SWITCH...ENDSW structure. The IF conditions indicate when to run the BREAK.

R:BASE exits the currently processing WHILE...ENDWHILE loop or SWITCH...ENDSW structure when a
BREAK is encountered, and does not run any further commands in the WHILE loop or SWITCH structure.
BREAK decreases the nesting level by one. BREAK passes control to the next line of the command file
following the WHILE loop or SWITCH structure.

Examples

For an example of using BREAK with WHILE...ENDWHILE, see WHILE...ENDWHILE. For an example of
using BREAK with SWITCH...ENDSW, see SWITCH...ENDSW.

6.5 C

6.5.1 CALL

Runs a Stored Procedure.

Syntax

A) As function: SET VAR vVariable TYPE = (CALL procname(arglist))

B) As command: CALL procname(arglist)

About the CALL Command

The call command is used to invoke a Stored Procedure that was created by using the SET PROCEDURE
command. It can be referenced by either a function notation or as a stand-alone command. In either
case the argument list must be included. If you wish to include a blank argument list then use an empty
pair of parenthesis.

Oterro 11 Help Manual200

Copyright © 1982-2024 R:BASE Technologies, Inc.

Both methods of using CALL have their advantages. For example, using the function notation allows you
to use a Stored Procedure in a computed view or to invoke a Stored Procedure via an SQL statement. On
the other hand, used as a command, you will be able to reference the Stored Procedure by itself.

When using the Function notation the return value of the Stored Procedure is stored in the variable itself
or displayed in the column (in the case of a computed column in a table or view). When using the
Command notation the return value of the Stored Procedure will be placed into the system variable
STP_RETURN. STP being an abbreiviation of Stored Procedure.

Examples

In the example below, a view is using a Stored Procedure to calculate values from another table.

CREATE VIEW MonthSum (CustomerID,CustomerSummary) +
AS SELECT T1.CustomerID,(CALL SumUpCust(T1.CustomerID)) FROM Customers T1

In the following example, an SQL select statement is used to invoke a maintenance routine from another
application using Visual Basic or Oterro. The use of WHERE LIMIT=1 causes the procedure to run once
and only once. Without this clause the Stored Procedure would execute once for every matching row in
the table. The AnyTable can be any table in the database in this case. The only requirement is that we
must use a table in order to have a "healthy" SELECT clause.

SELECT (CALL DBCheck()) FROM AnyTable WHERE LIMIT=1

6.5.2 CLEAR

Use the CLEAR command to remove global variables from memory or clear table locks.

Options

ALL VARIABLES
Removes all global variables from memory.

EXCEPT varlist
Specifies variables that the CLEAR command will not remove. You can use wildcards in variable names.

NOW
Clears all the variable storage blocks (VSBs), including all printer control code variables and other non-
permanent system variables (NPSVs). It re-allocates the blocks with just the permanent system variables
(PSVs), #DATE, #TIME, #PI and SQLCODE. Without the fourth parameter, printer control code variables
and other # variables are NOT cleared. Also, it does not completely re-initialize the memory blocks as
does the CLEAR ALL VAR NOW. The NOW argument is specific to DOS versions of R:BASE.

STATICVAR varlist
Clears a list of one or more static variables. You can use wildcards in variable names. Static variables
are created with the SET STATICVAR command.

TABLE LOCKS
Removes all locks on tables. This command parameter must be used with MULTI set to OFF and while
connected to the database.

R:BASE Database Commands 201

Copyright © 1982-2024 R:BASE Technologies, Inc.

VARIABLES varlist
Removes a list of one or more variables. Use this option at the end of a complete set of procedures to
clear variables that are no longer needed. You can use wildcards in variable names.

About the CLEAR Command

When R:BASE is first loaded into memory, only system variables are defined; they are not affected by
the CLEAR command. Other variables you define remain in memory until you exit from R:BASE or use
the CLEAR command.

Examples

The following command removes the global variables vcounter and vname from memory.

CLEAR VARIABLES vcounter, vname

The following command removes all global variables from memory.

CLEAR ALL VARIABLES

The following command removes all global variables except var1.

CLEAR ALL VARIABLES EXCEPT var1

The following command clears all variables beginning with the letter v.

CLEAR VARIABLES v%

The following command clears the vStartDate static variable.

CLEAR STATICVAR vStartDate

6.5.3 CLOSE

Use the CLOSE command to close an open cursor that was defined with the DECLARE CURSOR
command.

Options

cursorname
Specifies a 1 to 18 character cursor name that has been previously specified by the DECLARE CURSOR
command and opened with the OPEN command.

About the CLOSE Command

Cursors are pointers to rows in a table, and are defined using the DECLARE CURSOR command. When
you no longer want to use the cursor but want to retain it for later use, use the CLOSE command to close
the cursor. When you open the cursor again, it is positioned at the beginning of the set of rows defined
by the DECLARE CURSOR command.

Use the LIST CURSOR command to list all of the currently defined cursors and whether the cursor is
opened or closed.

When you close a cursor, most of the memory taken by the cursor definition is returned. If the DECLARE
CURSOR command used any file handles, they are released.

Oterro 11 Help Manual202

Copyright © 1982-2024 R:BASE Technologies, Inc.

Example

The following command makes the rows defined by the DECLARE CURSOR command as cursor1
unavailable. To use the information defined by cursor1 again, you need to reopen the cursor with the
OPEN command.

CLOSE cursor1

6.5.4 COMMENT

Use comments in command or application files to provide internal program documentation.

There are a few comment designators: "--", "{ }", and "*()".

1. A "--" comment can be used only on a single line either by itself or following a command.

To comment an individual line, add two hyphen characters "-" to the beginning of the line. A
carriage return at the end of the line indicates the end of the text for a comment that begins with
two hyphens. In R:BASE Editor, the syntax highlighting will alter the display and change the font
color to pink and the style to italicized. In the following example;

CLEAR VAR vResult

the command will become:

--CLEAR VAR vResult

2. A "{ }" comment may share a command line with a command, occupy a line itself, or extend over
multiple command lines.

This designator is the recommended option with the latest releases of R:BASE, as it helps in avoiding
any confusion when using parentheses with your R:BASE expressions. The set of squiggly brackets
"{}", with the desired commented text or commands enclosed within the squiggly brackets will
comment the text. In the following example;

PLUGIN RPDFMerge 'vResult +
|ACTION MERGE +
|DOC_LIST_FILE PDFFilesToMerge.LST +
|SHOW_SETUP_DIALOG ON +
|OUTPUT_FILE OneBigMergedFile.PDF '

the command(s) will become:

{

PLUGIN RPDFMerge 'vResult +

|ACTION MERGE +

|DOC_LIST_FILE PDFFilesToMerge.LST +

|SHOW_SETUP_DIALOG ON +

|OUTPUT_FILE OneBigMergedFile.PDF '

}

Keep in mind that any command(s) that are embedded within a multiple-line comment will not be
executed.

3. A "*()" comment may share a command line with a command, occupy a line itself, or extend over
multiple command lines.

Another use of characters that will comment your code is the asterisk character preceding a set of
parentheses "*()", with the desired commented text or commands enclosed within the parentheses.
R:BASE interprets text following an asterisk and left parenthesis as a comment until a closing right

R:BASE Database Commands 203

Copyright © 1982-2024 R:BASE Technologies, Inc.

parenthesis is reached. If the right parenthesis is not entered, R:BASE responds with a continuation
prompt (+>). Enter a closing parentheses until you are returned to the R> Prompt, or other
processing. In the following example;

PLUGIN RPDFMerge 'vResult +
|ACTION MERGE +
|DOC_LIST_FILE PDFFilesToMerge.LST +
|SHOW_SETUP_DIALOG ON +
|OUTPUT_FILE OneBigMergedFile.PDF '

the commands will become:

*(

PLUGIN RPDFMerge 'vResult +

|ACTION MERGE +

|DOC_LIST_FILE PDFFilesToMerge.LST +

|SHOW_SETUP_DIALOG ON +

|OUTPUT_FILE OneBigMergedFile.PDF '

)

Although this option is still supported in R:BASE, it is now recommended that you use the squiggly
bracket "{}" method above. Keep in mind that any command(s) that is embedded within a multiple-
line comment will not be executed.

Using Comment Designators

· Although used primarily in command files, you can enter a comment at the R> Prompt.

· If you place a comment on the same line as a command, leave at least one space between the
comment and the command so the comment is not interpreted as part of the command.

Restrictions on Using the Comments

· Do not include comments within the text of an ASCII menu file or a menu block because the comment
will be read as part of the file.

· Do not embed comments within multi-line commands between continuation characters.

· Once starting a comment with a { bracket, everything except other left and right brackets is ignored
until the matching right bracket.

· Once starting a comment with *(, everything except other left and right parentheses is ignored until
the matching right parenthesis.

6.5.5 COMMENT ON

Use the COMMENT ON command to add a description to a database, table, view, or column.

Options

colname

Oterro 11 Help Manual204

Copyright © 1982-2024 R:BASE Technologies, Inc.

Adds a description for a column in all tables in which it appears.

DATABASE
Adds a description for the connected database.

DELETE
Removes a description for a table or for a column in either the specified table or in all tables.

IN tblname
Adds a description for a column only in the specified table.

IS 'description'
Defines a description for a table or for a column in either the specified table or in all tables. The
description is limited to 128 characters. The text must be enclosed in quotes using the current QUOTES
setting.

TABLE tblname
Adds a description for the specified table.

VIEW viewname
Adds a description for the specified view.

tblname.colname
Specifies a column name. In a command, you can enter #c, where #c is the column number. In an SQL
command, a column name can be preceded by a table or correlation name and a period
(tblname.colname).

About the COMMENT ON Command

Descriptions must be enclosed in single quotation marks ('), or the current delimiter character for
QUOTES.

When you add a description to a column that appears in multiple tables, R:BASE adds the description to
the column in every table. If you add a new table containing the column, you must add the description
for that column to the new table.

The (CVAL('DBCOMMENT')) function can be used to retrieve the database comment.

Comments are stored in the SYS_COMMENTS system table. When a column or table is renamed or
removed, R:BASE automatically updates the SYS_COMMENTS table to reflect the change.

When access rights for a table have been assigned using the GRANT command, COMMENT ON requires
the database owner's user identifier to describe tables and columns.

Examples

The following command adds a description to the Employee table.

COMMENT ON TABLE Employee IS 'Employee Information'

The following command adds a description to the EmpID column in all tables in the database.

COMMENT ON EmpID IS 'Employee Identification Number'

The following commands show two ways to add a description to the EmpID column in only the Employee
table.

COMMENT ON Employee.EmpID IS 'Employee Identification Number'
COMMENT ON EmpID IN Employee IS 'Employee Identification Number'

The following command removes the description from the Employee table.

COMMENT ON TABLE Employee DELETE

R:BASE Database Commands 205

Copyright © 1982-2024 R:BASE Technologies, Inc.

The following command removes the description from the EmpID column in every table in which the
column occurs.

COMMENT ON EmpID DELETE

The following command removes the description from the EmpID column in the Employee table.

COMMENT ON EmpID IN Employee DELETE

The following command adds a description to the UserManagement database.

COMMENT ON DATABASE IS 'User and Contact Management System'

6.5.6 CONTINUE

Use the CONTINUE command to move to the next occurrence of the WHILE loop and run the code.

Example

In the following example, when the code is run, processing returns to line 3 after it completes the
CONTINUE command on line 6. The while-block commands in line 8 are not run.

SET VARIABLE v1=0
SET VARIABLE V2=1
WHILE v1 = 0 THEN
 *(while-block commands)
 IF v2 <> 0 THEN
 CONTINUE
 ENDIF
 *(while-block commands)
ENDWHILE

6.5.7 CONVERT

The CONVERT command is used to convert 4.5 and higher databases to R:BASE 11.

Options

dbname
Specifies the database to be converted.

IDENTIFIED BY
Specifies the user identifier. If left blank, R:BASE prompts you for the user identifier. R:BASE does not
display it as you enter the text.

OWNER
Optional; specifies the database owner name. If omitted and an OWNER name exists, you will be
prompted.

About the CONVERT Command

Oterro 11 Help Manual206

Copyright © 1982-2024 R:BASE Technologies, Inc.

R:BASE requires the conversion of your existing 5.5 or lower R:BASE database. Once the database is
converted, it CANNOT be accessed by any previous version of R:BASE. Be sure and backup your
database before you convert it.

6.5.8 CREATE INDEX

Use the CREATE INDEX command to speed up data retrieval by creating pointers that locate rows in a
table easily.

Options

,
Indicates that this part of the command is repeatable.

ASC
DESC
Specifies whether to sort a column in ascending or descending order.

CASE
Specifies that the data values will be case sensitive.

colname
Specifies a column name. The column name is limited to 128 characters. In a command, you can enter
#c, where #c is the column number shown when the columns are listed with the LIST TABLES command.

INDEX indexname
Specifies an index, which is displayed with the LIST INDEX command. An indexname is required.

ON tblname
Specifies the table in which to create an index for a column.

SIZE n
Sets the minimum number of characters to preserve to determine uniqueness during hashing. This
number can be a maximum of 196 characters. The index is created with the first n characters preserved
and the rest of the value stored as a 4-byte hashed representation.

UNIQUE
Requires the values in a column to be unique.

(<UMSG>)
Creates a constraint violation message to appear whenever a unique index data integrity violation
occurs. The message can suit the meaning of your data, such as "You must enter a unique number" for a
unique index constraint violation. The index must be dropped, then recreated in order to modify the
violation message.

About the CREATE INDEX Command

An index creates pointers to rows in columns, which allows R:BASE to find the rows using pointers much
faster than searching the rows of data sequentially. You can index a column of any data type. An indexed
column improves the performance of the following commands, clauses, and operations.

R:BASE Database Commands 207

Copyright © 1982-2024 R:BASE Technologies, Inc.

Commands, Clauses, and Operations to Use with Indexes

DELETE DUPLICATES RULES

ORDER BY SELECT (when it includes a WHERE or an
ORDER BY clause)

PROJECT WHERE

Although indexes speed up processing, they might slow down data entry because building an index for
each value as it is entered takes time. Creating indexes for columns that contain many duplicate values
does not always speed up processing. Indexes also occupy space on a disk.

Null Values

An indexed column can contain null values, but R:BASE uses an index most efficiently if each row in the
indexed column contains a value. Primary keys, unique keys, or unique indexes explicitly restrict the
insertion of null values. For other indexes, you can define a rule to ensure that a column always contains
a value.

UPDATE Permission

When access rights for a table have been assigned using the GRANT command, you must have UPDATE
permission for the column you want to index.

Indexing Criteria

Some columns are better candidates than others for indexing. To receive the greatest benefit from
indexes, use the following criteria to help you decide which type of column is the best choice for indexing
your table(s):

Primary Key

R:BASE automatically indexes the column(s) that is defined as the table's primary key.

Foreign Key

R:BASE automatically indexes the column(s) that is defined as the table's foreign key.

Columns Used in Queries

Columns that are not primary or foreign keys but are frequently used in queries should be indexed.
Create a unique key constraint for columns that are not primary or foreign keys, but which uniquely
identify a row in the table.

Columns Frequently Using ORDER BY or GROUP BY

Include a column in an ascending-order index when the column is not a primary or foreign key but is
frequently referenced in an ascending-column ORDER BY or GROUP BY clause. Similarly, include a
column in a descending-order index when the column is frequently referenced in a descending-column
ORDER BY clause.

Full- and Partial-Text Indexes

Text columns can make effective indexed columns. If the size of the column that has a TEXT data type is
200 bytes or less, R:BASE creates a full-text index. A full-text index is an index that stores the entire
contents of a column as an index in File 3, which is the file that contains indexes to columns. If the size of
the column is greater than 200 bytes, R:BASE creates a partial-text index.

If you specify the SIZE option to be less than the defined length of a column, R:BASE creates a partial-
text index, and any text column that has a defined length over 200 bytes must be a partial-text index.
For columns that have a TEXT data type and exceed 200 bytes, you can specify the SIZE option to be
between 0 and 196 to create a partial-text index. Specifying the size allows you to base your index on a
specified number of characters at the beginning of the columns and to hash the remaining characters. For
example, you can index a 225-character column with a TEXT data type by specifying the SIZE option to
be any number less than 197 bytes. R:BASE will create an index with the first n characters and the rest
of the value will be stored as a four-byte hashed representation of the text.

Oterro 11 Help Manual208

Copyright © 1982-2024 R:BASE Technologies, Inc.

Partial-text indexes minimize storage space. However, partial-text indexes might not be as efficient as a
full-text index, for example:

CREATE TABLE cities (cityname TEXT(40), state TEXT(2), country +
TEXT(20))
CREATE INDEX cityindex ON cities (cityname, state)
INSERT INTO cities VALUES('Bellevue','WA','USA')
INSERT INTO cities VALUES('Belltown','PA','USA')
SELECT cityname, state from cities WHERE cityname = 'Bellevue'

In the above example, because the query reads data only from the index named cityindex, there is no
need to read the actual data stored in File 2-which is the data file-so the query is done quickly. The query
is an index-only retrieval and produces fast results.

If a partial-text index was used in the same query as above, the partial-text index could also only use
the index named cityindex. Because the partial-text index only preserves the first four characters, it is
impossible to return the correct answer to the query from the index. The query, as shown below, would
slow processing because R:BASE must read data from the R:BASE data file.

CREATE INDEX cityindex ON cities (cityname SIZE 4, state)
SELECT cityname, state from cities WHERE cityname = 'Bellevue'

When creating text indexes, be aware of the following:

· If you omit the SIZE option and the text field in the column is greater than 200 bytes, R:BASE
creates a partial text index by storing the first 32 bytes of each field and hashing the remaining
bytes in each field into a four-byte numeric representation of the text. For example, if the text is
280 bytes and you do not specify a size, R:BASE stores the first 32 bytes of each field and
hashes the remaining 248 bytes into a four-byte integer.

· If you specify the SIZE option to be 16 bytes for a 60-byte column with a TEXT data type,
R:BASE stores the first 16 bytes of each 60-byte text field and hashes the remaining bytes in
each field into a four-byte numeric representation of the text. The total length of each index
entry will be 20 bytes (16 + 4).

· If you specify the SIZE option to be 30-bytes for a 250-byte column with a TEXT data type,
R:BASE stores the first 30 bytes of each 250-byte field and hashes the remaining bytes in each
field into a four-byte numeric representation of the text. The total length of each index entry will
be 34 bytes.

· If you specify the SIZE option to be 250 bytes for a column with a TEXT data type, you have
made an illegal request because the maximum value for the SIZE option is 196 bytes when the
length of the text field is greater than 200 bytes. If you specified the SIZE option to be 196 bytes
for a 250-byte column, R:BASE would hash the remaining 54 bytes into a four-byte numeric
representation of the text.

· If you omit the SIZE option and the text field in the column is 200 bytes or less, R:BASE creates
a full-text index. For example, if the text is 80 bytes and you do not specify a size, R:BASE
builds a full-text index of 80 bytes.

MICRORIM_INDEXLOCK

The system variable, MICRORIM_INDEXLOCK, is available to control concurrency locks for the CREATE
INDEX command.
This variable prevents CREATE INDEX from holding a permanant database lock. It locks only as
necessary, allowing users access to the database. This results in longer index creation time but greater
concurrency. MICRORIM_INDEXLOCK is set to any integer value.

Examples

The following command creates an index for the custid column in the transmaster table.

CREATE INDEX trancust ON transmaster (custid)

The following example creates a multi-column index for the company, custaddress, and custstate
columns in the customer table.

R:BASE Database Commands 209

Copyright © 1982-2024 R:BASE Technologies, Inc.

CREATE INDEX custaddr ON customer (company ASC, custaddress ASC, custstate ASC)

The following example creates a unique index for the TRStockID column in the TStockHeader table.

CREATE UNIQUE INDEX TRSID ON `TStockHeader` (`TRStockID` ASC) +
('Values for rows in TurnRoundID must be unique!')

6.5.9 CREATE SCHEMA

Use the CREATE SCHEMA command to name a database and assign a user identifier for the database
owner.

Options

AUTHORIZATION dbname
Specifies the name of the database.

ownername
Allows you to assign a unique identifier for the owner of the database.

About the CREATE SCHEMA Command
A database name is limited to 128 characters. The database name must begin with a letter, and can
contain letters, numbers, and the following symbols: number or pound sign (#), dollar sign ($),
underscore (_),or percent sign (%). A database name cannot contain blanks or have a file extension, and
must follow the naming conventions for R:BASE and the operating system.

R:BASE creates four database files with extensions: .RX1, .RX2, .RX3, and .RX4. After you name a
database, you need to use other commands to define the tables, views, rules, and access rights for the
database.

Assigning A Database Owner's User Identifier
A database owner's user identifier must begin with a letter and can contain letters, numbers, and the and
the following symbols: number or pound sign (#), dollar sign ($), underscore (_),or percent sign (%). If
user identifiers are assigned to users, the database owner's user identifier must be unique among all
user identifiers in the database. A database owner's user identifier can be a maximum of 128 characters.

If you do not specify a user identifier, R:BASE assigns the default user identifier, PUBLIC. Until a user
identifier is assigned, anyone can modify the database structure, read, enter, change, or delete data.
When an owner's user identifier is assigned to a database, the database is accessible only by the owner.
To give other users access rights to the database, use the GRANT command.

You do not have to assign a user identifier when the database is created. To assign a user identifier after
the database has been created, use the RENAME OWNER command, the Utilities: Access Rights...
menu option in R:BASE for Windows or the Info: Create: Access Rights: Change Owner in R:BASE
for DOS.

CREATE SCHEMA stores the owner's case folding and collating tables from the configuration file in the
database. Be sure to keep a record of the owner's user identifier in a safe place away from your
computer. If you lose the owner's identifier, you cannot search the database to find it.

Building a Database
You can use CREATE SCHEMA and other CREATE commands as an alternative to creating a new
database using the menu options in R:BASE for Windows.

When you run the CREATE SCHEMA command, R:BASE closes the currently open database (if one
exists), then defines and opens a new database.

Transaction Processing and the CREATE SCHEMA Command

Oterro 11 Help Manual210

Copyright © 1982-2024 R:BASE Technologies, Inc.

If transaction processing is on when you enter a CREATE SCHEMA command, R:BASE first commits your
current transaction (if any), then creates and connects you to the database. Transaction processing is on
in the database, but you cannot reverse the CREATE SCHEMA command.

Example

The following command names the finance database and assigns jane as the database owner's user
identifier.

CREATE SCHEMA AUTHORIZATION finance jane

6.5.10 CREATE TABLE

Use the CREATE TABLE command to define a new table in an existing database.

Options

,

R:BASE Database Commands 211

Copyright © 1982-2024 R:BASE Technologies, Inc.

Indicates that this part of the command is repeatable.

AFTER
Sets the trigger to activate after the INSERT, UPDATE or DELETE action.

BEFORE
Sets the trigger to activate before the INSERT, UPDATE or DELETE action. This is the default setting if the
BEFORE/AFTER parameter is unused.

CASCADE
Maintains primary/foreign key relationships automatically. For example, if you either UPDATE or DELETE
a primary key value from a table, the corresponding foreign key values are updated or deleted
automatically. A CASCADE can be applied to UPDATE, DELETE or BOTH to specific primary keys. By not
specifying either UPDATE or DELETE, both CASCADE restrictions will be enforced upon the
primary/foreign key tables. Separate UPDATE and DELETE data restrictions can allow a CASCADE to be
enforced for records that are updated, but not enforced when records are deleted, in order to avoid an
accidental or undesired record delete. CASCADE can only be added to tables with primary keys.

CASE
Specifies that the data values will be case sensitive.

CHECK (condition)
Sets a condition to be satisfied before an update or insertion of a row can occur, which creates an
R:BASE rule.

(collist)
Specifies a list of one or more column names, separated by a comma (or the current delimiter), used in
the unique key specification. This option is only used when referencing a unique key.

colname
Specifies a column name. The column name is limited to 128 characters.

datatype
Specifies an R:BASE data type.

DEFAULT
Specifies a default value for the column if no value is provided by the user.

= (expression)
Determines a value using a text or arithmetic formula. The expression can include other columns from
the table, constant values, functions, or system variables such as #date, #time, and #pi.

(<FKMSG>)
Creates a constraint violation message to appear whenever a foreign-key data integrity violation occurs.
The message can suit the meaning of your data, such as "You must enter a valid number" for a foreign-
key constraint violation. You can define two messages: one for inserting and one for updating. A
constraint must be dropped, then recreated in order to modify the violation message.

FOREIGN INDEX
With the FASTFK setting on, creates a foreign key that has an index using row pointers for data retrieval
on selected columns.

FOREIGN KEY
Specifies a column or set of columns required to match values in a particular primary key or unique key
defined in a table.

(<NNMSG>)
Creates a constraint violation message to appear whenever a not-null data integrity violation occurs. The
message can suit the meaning of your data, such as "You must enter a valid number" for a not-null
constraint violation. A constraint must be dropped, then recreated in order to modify the violation
message.

NOT NULL
Prevents a column from accepting null values, but permits it to accept duplicate values.

Oterro 11 Help Manual212

Copyright © 1982-2024 R:BASE Technologies, Inc.

If this option is specified without a setting for a default value, you cannot insert rows without specifying
values for the given column.

(<PKMSG>)
Creates a constraint violation message to appear whenever a primary-key data integrity violation occurs.
The message can suit the meaning of your data, such as "You must enter a valid number" for a primary-
key constraint violation. You can define three messages: one for uniqueness, one for deleting, and one
for updating. A constraint must be dropped, then recreated in order to modify the violation message.

PRIMARY KEY
Specifies the column(s) to designate as a primary key.

procname
The procedure name. If a procedure by this name already exists in the database, an error is generated.

REFERENCES tablename
Identifies the primary key or unique key table to which the foreign key refers.

(size)
Defines the length of a column of the TEXT data type (if not the default 8). Defines the precision and
scale of a column of the DECIMAL or NUMERIC data type, if not the default of precision 9 and scale 0
(9,0). VARBIT, VARCHAR, and BIT either require or can have a size.

tblname
Specifies a table name. The table name is limited to 128 characters.

TEMPORARY
Creates a temporary table that disappears when the database is disconnected.

TRIGGER
Runs a Stored Procedure when an UPDATE, DELETE, or INSERT command is run on the table.

(<UMSG>)
Creates a constraint violation message to appear whenever a unique-key data integrity violation occurs.
The message can suit the meaning of your data, such as "You must enter a valid number" for a unique-
key constraint violation. You can define three messages: one for uniqueness, one for deleting, and one
for updating. A constraint must be dropped, then recreated in order to modify the violation message.

UNIQUE
Requires the values in a column to be unique by defining a unique key constraint.

USER
NULL
(value)
Default USER: Specifies the default value to be the user identifier.
Default NULL: Specifies the default value to be null.
Default (value): Specifies the default to be the indicated value.

About the CREATE TABLE Command

To define a table, you need to specify column definitions. Table and column names must begin with an
upper- or lowercase letter. Names can contain letters, numbers, and the following special characters: #,
$, _, and %. R:BASE verifies that a table or column name is unique by reading all characters.

When you define a table, you can also add table constraints. However, you cannot add a foreign key to a
temporary table.

To define more than one column in a command, use commas (or the current delimiter character) to
separate the column definitions.

Computed Columns

A computed column is a column containing a value that R:BASE calculates from an expression defined for
the column. In the expression, you can use other columns from the table, constant values, functions, and
the system variables #date, #time, and #pi. Global variables are not allowed in an expression.

R:BASE Database Commands 213

Copyright © 1982-2024 R:BASE Technologies, Inc.

You must assign a data type that is compatible with the result of the computation. The columns used for
calculating the computed column must precede the computed column in the table.

Indexing Columns

If you want to assign an index to a column, use the CREATE INDEX command.

Database Access Rights with CREATE TABLE

CREATE TABLE requires either the CREATE access right or the owner's user identifier when access rights
have been assigned with the GRANT command.

Examples

The command below defines a table named employee with the following columns and data types: empid
(INTEGER), emptitle(TEXT 30), empfname (TEXT 10), emplname (TEXT 16), empaddress (TEXT 30),
empcity (TEXT 20), empstate (TEXT 2), empzip (TEXT 10), empphone (TEXT 12), empext(INTEGER),
hiredate (DATE), and entrydate (DATE). In addition, the NOT NULL option specifies that the columns
empfname, emplname, and hiredate must contain a value. The NOT NULL UNIQUE option specifies that
the empid and empext columns must contain unique values.

CREATE TABLE employee (empid INTEGER NOT NULL UNIQUE, +
emptitle TEXT (30), empfname TEXT (10) NOT NULL, emplname TEXT +
(16) NOT NULL, empaddress TEXT (30), empcity TEXT (20), empstate +
TEXT (2), empzip TEXT (10), empphone TEXT (12), empext INTEGER +
NOT NULL UNIQUE, hiredate DATE NOT NULL, entrydate DATE)

The following command creates a table using the column constraint CHECK on the empid column.

CREATE TABLE employee (empid INTEGER CHECK (empid > 0), +
empname TEXT (40), empage INTEGER)

The example below creates a table using the column constraint CHECK on the empid and empage
columns.

CREATE TABLE employee (empid INTEGER CHECK (empid > 0), +
empname TEXT (40), empage INTEGER CHECK (empage >0 and empage < 100))

Table constraints are defined if it is necessary to reference multiple columns within the same expression.
The UNIQUE (collist) option is entered at the end of the following command so that the values in the
empid, empfname, emplname columns are unique as a group in a row. Because this option follows a
column definition, precede the option with a comma.

CREATE TABLE employee (empid INTEGER NOT NULL, +
emptitle TEXT (30), empfname TEXT (10) NOT NULL, emplname TEXT +
(16) NOT NULL, empaddress TEXT (30), empcity TEXT (20), empstate +
TEXT (2), empzip TEXT (10), empphone TEXT (12), empext INTEGER +
NOT NULL UNIQUE, hiredate DATE NOT NULL, entrydate DATE, +
UNIQUE (empid, empfname, emplname))

The following command creates a table that would contain an employee's total years of employment. The
command places a column constraint on the empid and empage columns, and a table constraint on the
yrshere and yrsanywhere columns. The value entered for yrshere must be less than or equal to the
value entered for yrsanywhere.

CREATE TABLE employee (empid INTEGER CHECK (empid > 0), +
empname TEXT (40), empage INTEGER CHECK +
(empage > 0 and empage < 100), yrshere INTEGER, +
yrsanywhere INTEGER, CHECK (yrshere <= yrsanywhere))

Oterro 11 Help Manual214

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.5.11 CREATE VIEW

Use the CREATE VIEW command to define a view that combines columns from existing tables or views.

Options

AS SELECT clause
Specifies the columns and rows to include in the view. As a rule anything that is acceptable in an ordinary
select clause will work here. If you are planning on using expressions you should considering using the
SELECT AS notation to give each column meaningful names.

(collist)
Specifies a list of one or more column names or aliases, separated by a comma (or the current
delimiter). These names will be the column headings displayed in the result of a SELECT command or the
Data Browser.

TEMPORARY
Creates a temporary view that disappears when the database is disconnected.

viewname
Specifies a view name.

WITH CHECK OPTION
Specifies that a row cannot be added or updated unless it meets the conditions included in the WHERE
clause (which is part of the SELECT clause). R:BASE uses this option only on a view that can be updated.

About the CREATE VIEW Command

CREATE VIEW defines a view to store in the sys_views table. You can use a stored view whenever
necessary. Unlike a table, stored views contain no data. R:BASE collects data for the view from the
source tables or views when a command calling the view is run.

A view is the most efficient way to gather data from separate tables or views into one location. A view
that can be updated allows you to enter, change, and delete data from the source table. The number of
tables in a view is dependent on available memory.

You can define a view containing a maximum of 400 columns from as many tables or views as memory
allows. However, a view is still limited to the 32,786 character row-size limit. You can use the SQL symbol
asterisk (*) to include all columns from all tables or views, or you can specify the columns you want to
include. You can combine these two methods to include all columns from one table or view and specify
columns from another table or view. You must separate column, table, and view names with commas (or
the current delimiter character).

Avoiding Multiple Occurrences of Columns

When you use only an asterisk (*) in the SELECT clause, the view will contain all columns from all tables
or views. If the tables or views contain common columns, the view will contain multiple occurrences of
those columns.

To avoid multiple occurrences of common columns, specify which columns to include in the view. For
example, to include all columns from one table but only certain columns from another table, use an * for
the first table, then list the column names to be included from the second table. You can specify the
columns for a view as t1.*, t2.col2, t2.col3, where t1.* specifies all columns from table t1and t2.col2,
t2.col3 specifies two columns from table t2. Be sure that the list does not include the common columns
contained in the second table. When you use a combination of * and column names, you must specify the

R:BASE Database Commands 215

Copyright © 1982-2024 R:BASE Technologies, Inc.

table with which * is associated. However, you can omit the table or correlation name for the columns
listed individually if those columns occur in only one table in the view.

Duplicate Rows

If the tables forming a view contain duplicate rows, either individually or in combination with other tables
in the view, multiple duplicate rows will be displayed. Usually, the presence of duplicate rows in a view
indicates a database design problem. Check your database structure for design flaws such as redundant
data storage.

Linking Columns

When you build a view from two or more tables or views, define the relationship between the source
tables and views by identifying linking columns in a WHERE clause. Linking columns are columns that
contain the same values; their names can be the same or different. For example, the following WHERE
clause specifies that a view displays only those rows where the values in t1.col1 are equal to the values
in the common column t2.col1.

WHERE t1.col1 = t2.col1

Updating Views

You can update the data for columns in a view when the view does not contain a UNION operator, and its
SELECT clause meets the following requirements:

· The clause does not specify DISTINCT.
· The clause does not include a sub-SELECT command in the WHERE clause.
· The clause does not include a GROUP BY or HAVING clause.
· The clause does not include an ORDER BY clause.

When you add, change, or delete rows by updating a single table view, you also modify the data in the
source table. In multi-table views you cannot add, edit, or delete rows. Any additions or changes to data
made through a view are subject to all the user-defined rules specified for the table when it was
constructed. In addition, if you specify the WITH CHECK OPTION for the view, you can only add or
modify rows that meet the conditions defined in the WHERE clause.

You can only use the DELETE, INSERT, LOAD, and UPDATE commands with views that can be updated. If
a view cannot be updated, you can use the view only to display data or as the basis for reports.

Views Compared with Look-up Tables

If the data used in a report is stored in more than one table, using a view is more efficient than a driving
table and several look-up tables because it takes less time to print the report using a view. Using a view
is more efficient because R:BASE gathers the data for a view before, rather than during, printing.

Database Access Rights with CREATE VIEW

The access rights that can be assigned with the GRANT command depend on whether or not the view can
be updated. The ALL PRIVILEGES, DELETE, INSERT, SELECT, and UPDATE access rights can be granted
on a view that can be updated. You must have ALL PRIVILEGES or SELECT access rights on a table or
view to include it in a view.

If you have been assigned the SELECT access right and the WITH GRANT OPTION has been assigned on
all the source tables or views used in a view, you can grant both SELECT and the WITH GRANT OPTION
to other users.

If you are the database owner or you have the WITH GRANT OPTION on a view, you can also assign
access rights on stored views.

Changing Views

You cannot change a view at the R> Prompt. To change a view from the R> Prompt, you must delete the
view by using the DROP command, then define a new view. However, you can use the View Designer

Oterro 11 Help Manual216

Copyright © 1982-2024 R:BASE Technologies, Inc.

option from the Tools menu in R:BASE for Windows or Views: Create/modify: Manage views in
R:BASE for DOS, to change a view that meets the following requirements:

· The view does not include a GROUP BY or HAVING clause.
· The view does not include a sub-SELECT command in the WHERE clause.

Examples

The following command defines a view that can be updated and specifies a subset of columns "custid,
company, custaddress, custcity, custstate, and custzip" from one table, customer. The column list must
match the number of columns in the SELECT clause; the names, however, can be different. The WHERE
clause restricts the rows to those with zip codes ranging from 40001 through 49999. The WITH CHECK
OPTION specifies that only rows that meet the condition included in the WHERE clause can be added or
changed in the database.

CREATE VIEW cust_addr (custid, custcompany, custaddress, custcity, custstate, +
custzip) AS SELECT custid, company, custaddress, +
custcity, custstate, custzip FROM customer WHERE custzip +
BETWEEN 40001 AND 49999 WITH CHECK OPTION

The following command defines a view that will display only those rows from the customer and
transmaster tables that have matching values in the common column custid. Therefore, only the rows
that have customers who have had a transaction will be included in the view. The command line ORDER
BY custid tells R:BASE to sort the rows and display them by the customer identification number.

CREATE VIEW cust_trans AS SELECT t1.custid, company, netamount +
FROM customer t1, transmaster t2 WHERE t1.custid = t2.custid +
ORDER BY custid

The following command defines a view that will display only those rows from the customer table where
the values in the custidcolumn do not exist in the transmaster table. Therefore, only the rows that have
customers who have not had a transaction will be included in the view.

CREATE VIEW cust_notrans AS SELECT custid, company FROM +
customer WHERE custid NOT IN (SELECT custid FROM transmaster) +
ORDER BY custid

The following command combines the commands in the two preceding examples, creating a view that will
display all rows from both the customer and the transmaster tables. The UNION operator joins the two
SELECT clauses, allowing you to display rows for all customers whether or not they have had a
transaction.

The first SELECT clause instructs R:BASE to include the rows from both tables where the values in custid
match. The second SELECT clause instructs R:BASE to include rows from the customer table where there
are no values for custid in the transmaster table.

When you use the UNION operator, the number of columns specified in the SELECT clauses must be the
same and the data types of the columns must be compatible. If there is no column in one table that
matches a column listed in the other table's SELECT clause, you must substitute a value (or null value).
Because the netamount column does not exist in the customer table used in the second SELECT
statement, the value $0.00 was entered in place of netamount.

CREATE VIEW all_cust_trans AS SELECT t1.custid, company, netamount +
FROM customer t1, transmaster t2 WHERE t1.custid = t2.custid +
UNION SELECT custid, company, $0.00 FROM customer +
WHERE custid NOT IN (SELECT custid FROM transmaster) +
ORDER BY custid

R:BASE Database Commands 217

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.6 D

6.6.1 DBCONN

Use the DBCONN command to view all applications with connections to the currently connected database.

The list of applications may include R:BASE, Runtime for R:BASE, compiled applications, programs that
have made ODBC connections to the databases, etc.

The output shows the application name, path, and file name.

R> DBCONN

Current connected database applications:
R:BASE 11 (C:\RBTI\RBG11\RBG11.exe)

6.6.2 DECLARE CURSOR

Use the DECLARE CURSOR command to create a cursor that points to a row in a table or view.

Options

cursorname
Specifies a 1 to 18 character cursor name.

CURSOR FOR SELECT clause
Specifies the columns and rows from the table whose values you want to use. You may include the
DISTINCT modifier as well as WHERE clauses and ORDER BY clauses.

SCROLL
Defines a cursor that moves forwards and backwards through a table. If this option is omitted, the cursor
can only move forward.

About the DECLARE CURSOR Command

In the SELECT clause, specify the columns that contain the values you want to use from the row.
Specifying the columns makes the column values accessible to the FETCH and SET VARIABLE commands.
Once a cursor is declared, use the OPEN command to initialize the cursor and position it before the first
row specified by DECLARE CURSOR.

Use DECLARE CURSOR to define a path through a table or view. You can move through the defined rows
using the FETCH command by using either multiple FETCH commands or embedded FETCH commands
within a WHILE loop. You only need to point to specific columns with DECLARE CURSOR, then FETCH can
retrieve those columns by placing their values into variables. You can define a scrollable cursor, which is
a cursor that moves backwards and forwards through a table.

DECLARE CURSOR defines a temporary view in memory; R:BASE does not store the view definition in
the sys_views table. The SELECT clause defines columns, tables, rows, sort order, and potential grouping
for the rows. When DECLARE CURSOR executes, it validates the syntax and names of columns and
tables. The OPEN command can evaluate variables, create a copy of the cursor based on those values,
then position the cursor before the first row.

Oterro 11 Help Manual218

Copyright © 1982-2024 R:BASE Technologies, Inc.

Listing Cursors

Use LIST CURSOR to list all currently defined cursors and their status, open or closed.

Using Cursor Names in Commands

You can use the cursor name instead of a table name in commands. The following table provides
examples of using the cursor name instead of a table name in commands.

To do this... Use the cursor name like this...

Set a variable to a column value FETCH cursorname INTO varlist
SET VARIABLE varname = colname WHERE CURRENT OF
cursorname

Change a column value to a constant UPDATE tblname SET colname + = value WHERE
CURRENT OF cursorname

Change a column value to a variable value UPDATE tblname SET colname + = .varname WHERE
CURRENT OF cursorname

Change a column value to an expression UPDATE tblname SET colname + = (expression) WHERE
CURRENT OF cursorname

Delete the pointed-to row DELETE FROM tblname + WHERE CURRENT OF cursorname

Modifying Data Using a Cursor

If you use a cursor in commands that modify data (the UPDATE and DELETE commands), only the
current row is modified. To modify all referenced rows, include FETCH in a WHILE loop to move the
cursor through the rows.

Closing Cursors

The following commands close cursors.

Command Name Description

CLOSE Closes the open cursor but does not remove the cursor definition. However
using CLOSE frees most of the memory used when a cursor is opened. CLOSE
also frees any file handles used by DECLARE CURSOR.

DROP CURSOR Entirely removes the cursor definition. Dropping a cursor definition frees all
memory used by the definition.

Examples

The following example uses the SCROLL option with DECLARE CURSOR.

DECLARE c1 SCROLL CURSOR FOR SELECT empid, transid, transdate, custid, netamount FROM
transmaster

Checking End-of-Data Conditions Using sqlcode

The following example uses sqlcode to check end-of-data conditions, which is the recommended program
structure for DECLARE CURSOR. The sqlcode system variable holds values only for specific types of
status.

Type of Error SQLCODE

Data found 0

Data not found 100

In the following example, the WHILE statement checks the value of sqlcode.

1) DECLARE cursor1 CURSOR FOR SELECT custid, netamount +
 FROM transmaster ORDER BY netamount
2) OPEN cursor1
3) FETCH cursor1 INTO vcustid INDICATOR vi1, vnetamt +
 INDICATOR vi2

R:BASE Database Commands 219

Copyright © 1982-2024 R:BASE Technologies, Inc.

4) WHILE sqlcode <>100 THEN
 SHOW VARIABLE vcustid
 SHOW VARIABLE vnetamt
5) FETCH cursor1 INTO vcustid INDICATOR vi1, vnetamt +
 INDICATOR vi2
 ENDWHILE
6) DROP CURSOR cursor1

1. DECLARE CURSOR defines the cursor path.
2. OPEN opens the cursor, evaluates variables, and positions the cursor before the first row.
3. The first FETCH command retrieves the first set of values. The indicator variables vi1 and vi2

capture the status values, -1 for null and 0 for a value. If you omit indicator variables in FETCH
commands, R:BASE displays a message if it encounters a null value, but continues processing rows.

4. The WHILE loop processes the rows until there are no more rows. At that point, sqlcode is set to
100, and the WHILE loop ends. Control passes to the command after ENDWHILE. If the first FETCH
retrieved no data, the WHILE loop is not entered.

5. FETCH retrieves all succeeding rows and sets sqlcodeeach time. When it does not find any more
data, sqlcode is set to 100 and the WHILE loop ends.

6. DROP CURSOR removes the cursor definition from memory.

Using the WHENEVER Command with DECLARE CURSOR

The following example shows the use of the WHENEVER command, which checks the value of sqlcode. A
single WHENEVER command can start a status-checking cycle that remains in operation until a command
or procedure file finishes running. As in the first two examples, an indicator variable is included with each
variable in FETCH. Without the indicator variables, R:BASE displays a message if it encounters a null
value, but continues processing rows.

1) WHENEVER NOT FOUND GOTO skiploop
2) DECLARE cursor1 CURSOR FOR SELECT custid, netamount +
 FROM transmaster ORDER BY netamount
3) OPEN cursor1
4) FETCH cursor1 INTO vcustid INDICATOR vi1, vnetamt +
 INDICATOR vi2
5) WHILE #DATE IS NOT NULL THEN
 SHOW VARIABLE vcustid
 SHOW VARIABLE vnetamt
 FETCH cursor1 INTO vcustid INDICATOR vi1, vnetamt +
 INDICATOR vi2
 ENDWHILE
6) LABEL skiploop
7) DROP CURSOR cursor1

1. WHENEVER NOT FOUND tells R:BASE to execute GOTO if a command that searches for data, such as
FETCH, cannot find more rows. If the first FETCH command does not find any rows, control passes to
the command following LABEL skiploop. WHENEVER automatically checks any command that
searches for data. If a data-not-found condition occurs, control passes to the command following the
specified label.

2. DECLARE CURSOR defines the cursor path.
3. OPEN opens the cursor, evaluates the variables, and positions the cursor before the first row.
4. The first FETCH command retrieves the first set of values. If no rows match, control passes to LABEL

 skiploop. Indicator variables vi1 and vi2 capture the status values (-1 for null and 0 for a value). If
you omit indicator variables in FETCH commands, R:BASE displays a message if it encounters a null
value, but continues processing rows. (WHENEVER instructs R:BASE to exit the WHILE loop only
when sqlcode is 100.)

5. The WHILE loop processes rows until WHENEVER stops execution.
6. This label defines where to pass control if a data-not-found condition occurs before the WHILE loop

begins executing. WHENEVER includes this label name.
7. DROP CURSOR removes the cursor definition from memory.

Visit the From The Edge Web site to download the "R:BASE Cursors Explained" technical document.

http://www.razzak.com/fte

Oterro 11 Help Manual220

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.6.3 DELETE

Use the DELETE command to remove selected rows from a table.

Options

FROM tblview
Specifies the table or view.

ROWS
This word is optional.

WHERE clause
Limits rows of data. For more information, see WHERE.

WHERE CURRENT OF cursor
Specifies a cursor pointing to the row the DELETE command will remove. This option can replace a
standard WHERE clause.

Use the DECLARE CURSOR command to define the cursor.

filespec
Specifies the file to be deleted. Optionally, include a drive and path specification in the form D:
\PATHNAME\FILENAME.EXT.

On a workstation with multiple drives (local or mapped), especially when the files are on the different
drive, it is always the best practice to define a drive letter when copying, deleting, renaming or running
files, unless the specified files are located in the working directory. You will not need to specify the drive
letter if all of the files are located in the default directory when using the copy, delete, rename or run
commands.

About the DELETE Command

DELETE removes rows from a table or view. Without a WHERE or WHERE CURRENT OF clause, R:BASE
deletes all rows from the specified table or view. R:BASE displays a confirmation message before
deleting the rows. R:BASE does not display a confirmation message when you execute a DELETE
command from a command file. Views must be updatable to delete rows from it; for more information
about updatable views, see CREATE VIEW.

Before you use a WHERE clause with the DELETE command, test the clause by using it with a SELECT
command, which allows you to view the rows before deleting them.

The WHERE CURRENT OF clause specifies a cursor pointing to a row that the DELETE command will
remove. Once you define a cursor with DECLARE CURSOR and open a route with the OPEN command,
you can use the cursor in a WHERE CURRENT OF clause to delete only the current row. Use the FETCH
command to move the cursor to the next available row.

You must restore deleted rows from a backed up database or table. To recover disk space after deleting
rows, use the PACK or RELOAD commands.

DELETE removes rows from a table or single-table view. If you have set transaction processing on, you
can restore rows with ROLLBACK. If not, you must restore them from a backup database or table. If you
prefer not to use transaction processing, you can first use a relational command, such as PROJECT, to
make a backup copy of the table from which you are deleting rows. Then you can delete rows from the
original table and remove the backup copy later.

R:BASE Database Commands 221

Copyright © 1982-2024 R:BASE Technologies, Inc.

Examples

The following command deletes all rows from the transmastertable. When you omit a WHERE clause, be
sure that you want to delete all rows from the table.

DELETE FROM transmaster

The following command deletes rows from the transmaster table where the custid value is 100.

DELETE FROM transmaster WHERE custid = 100

6.6.4 DELETE DUPLICATES

Use the DELETE DUPLICATES command to remove duplicate rows from a table.

Options

FROM tblname
Specifies the table name.

USING collist
Deletes rows based on duplicate values in the specified list of columns.

WHERE clause
Limits the rows of data to be deleted. For more information, see WHERE.

About the DELETE DUPLICATES Command

Use DELETE DUPLICATES to delete duplicate rows from a table. A duplicate row is a row where the
values for each column are exactly the same as those in another row in the table. This command deletes
all but the first row for each set of duplicate rows.

DELETE DUPLICATES processes faster when the table contains an indexed column and the USING collist
option is used.

Rules for Column Deletion
You can specify which rows to delete in a list of columns. The following rules apply:

· The first row is retained in the table.
· Any row with duplicate values in a specified column list is deleted, regardless of the values in

any of its other columns.

Case Sensitivity
DELETE DUPLICATES is case sensitive when CASE is set on. For example, if CASE is set on and one row
included the name SMITH and another row included the name Smith, R:BASE would not delete either
row. However, if CASE was set off, R:BASE would delete the second row. (The default setting for CASE is
off.)

NULL Values
When NULL values exist in the table, the EQNULL setting must be set to ON to ensure duplicates are
removed.

You must restore deleted rows from a backed up database or table. To recover the data's disk space
after rows are deleted, use PACK or RELOAD.

Oterro 11 Help Manual222

Copyright © 1982-2024 R:BASE Technologies, Inc.

If you have set transaction processing on, you can restore rows with ROLLBACK. If not, you must restore
them from a backup database or table. If you prefer not to use transaction processing, you can first use
a relational command, such as PROJECT to make a backup copy of the table from which you are deleting
rows. Then you can delete rows from the original table and remove the backup copy later.

Example

The following command deletes duplicate rows from the transmaster table, but retains the first of the
duplicate rows.

DELETE DUPLICATES FROM transmaster

The following example deletes duplicate rows based on the transid, empid, and custid columns in the
transmaster table. Only the designated columns will be used to determine whether the rows are
duplicates.

DELETE DUPLICATES FROM transmaster USING transid, empid, custid

The following deletes the duplicate rows based on the transid and empid columns in the transmaster
table, where transaction dates are greater than January 1, 2020.

DELETE DUPLICATES FROM transmaster +
 USING transid, empid +
 WHERE transdate in (
 SELECT transdate FROM transmaster +
 WHERE transdate > 01/01/2020)

6.6.5 DETACH

Use the DETACH command to remove a dBASE file table and its associated dBASE index files from the
open R:BASE database.

Options

,
Indicates that this part of the command is repeatable.

ALL
Removes all dBASE tables and associated dBASE index files from the open R:BASE database.

ALL EXCEPT file_tblname
Removes all dBASE tables and associated dBASE index files from the open R:BASE database, except the
specified table.

file_tblname
Removes the specified dBASE table and associated dBASE index files from the open R:BASE database.

NOCHECK
Eliminates the confirmation message.

About the DETACH Command

R:BASE Database Commands 223

Copyright © 1982-2024 R:BASE Technologies, Inc.

Before you can detach a dBASE file table, an R:BASE database must be open. When you detach a dBASE
file table, do not include the .DBF extension. DETACH requires the database owner's user identifier if one
has been defined.

If you remove a dBASE file that is used in a form, report, label, or application, make the necessary
changes to reflect detaching the dBASE file from the database. The rules, descriptions, and any access
rights are deleted when you detach the dBASE file.

Use ATTACH to reattach a detached file to the same or a different database.

When STATICDB is set on-which actives a read-only schema mode-DETACH is unavailable.

Example

In the following example, the first command line opens the concomp database. The second command line
detaches the dBASE file table sampgate from the concomp database.

CONNECT concomp
DETACH sampgate

6.6.6 DROP

Use the DROP command to remove the specified item from the database.

Options

,
Indicates that this part of the command is repeatable.

ALL

Oterro 11 Help Manual224

Copyright © 1982-2024 R:BASE Technologies, Inc.

Removes all tables from the database.

ALL EXCEPT tblname
Removes all tables from the database except the table(s) listed.

ALL EXCEPT viewname
Removes all views from the database except the view(s) listed.

colname IN tblname
Removes the index from the specified column in the specified table.

COLUMN colname FROM tblname
Removes a column's structure and data from the specified table.

CURSOR cursorname
Removes the specified cursor. The DROP CURSOR command removes a cursor definition from memory,
therefore freeing memory.

Cursors are dropped when you use the CONNECT command to open another database, or the
DISCONNECT command to close the database.

FOR tblname
Removes the rule from the specified table for the specified table.

FORM formname
Removes the specified form.

INDEX
Removes the index from the column in the specified table.

indexname
Removes a named index.

LABEL labelname
Removes the specified label.

NOCHECK
Eliminates the confirmation message.

PROCEDURE procname
Removes the specified Stored Procedure from the database.

REPORT rptname
Removes the specified report.

RULE
Removes the specified rule.

TABLE
Removes the specified table.

tblname
Specifies the table name to be removed.

tblname.colname
Removes the index from the specified column in the specified table.

VIEW viewname
Removes the specified view.

viewname
Specifies the view name to be removed.

WITH 'message'

R:BASE Database Commands 225

Copyright © 1982-2024 R:BASE Technologies, Inc.

Removes the specified rule from all tables to which it applies. Omitting the WITH 'message' option
removes all rules.

About the DROP Command

The table below lists guidelines for using the DROP command.

When you drop... You must...

A column used in the definition of a computed
column

Remove the computed column first.

A column used in a form, report, or label Delete the column from the form, report, or label
definition.

A column used in a rule Delete the rule for that column in any table from
which you removed the column.

A form, report, label, table, or view used in an
application

Revise your application to reflect the changes in
the database after dropping the form, report, or
label.

A view or table used in a form report or label Delete the form, report, or label from the
database after dropping the form, report, or label.

A column or table used in a view Delete the view from the database.

A table that has rules Delete the rule with DROP if the table you are
dropping is used in the WHERE clause of a rule
definition. For example, a table name is used in a
WHERE clause of a rule definition when a rule is
used to verify a value in one table against values
in another table.

R:BASE deletes the rules if the table is the table on which the rules are based.

After running the DROP command, the database item is gone, but the disk space the item occupied is not
available. To recover that space, use the PACK or RELOAD commands.

You can rebuild a dropped index using CREATE INDEX.

When STATICDB is set on-which actives a read-only schema mode-DROP is unavailable.

Database Access Rights with DROP

The DROP command requires that you enter the database owner's user identifier if a user identifier has
been assigned with the GRANT command. However, if a user has CREATE or ALTER access rights, that
user can use the DROP command to drop tables or any columns in tables to which the user has rights.

Removing Rules with DROP RULE
Before you remove a rule with the DROP RULE command, enter a SELECT command to verify that you
would be removing the correct rule from the correct table(s). Use the conditions in a WHERE clause to
enter the exact message and any table names that you plan to use in the DROP command. Once you
have verified that the message would remove the correct rules, proceed with the DROP RULES
command. For example, to verify that a DROP command with the message "Model number must be
unique" would remove only the rules you want to remove, enter the following SELECT command. R:BASE
would display all the rules for all the tables in the database to which this message applies.

SELECT * FROM SYS_RULES WHERE SYS_MESSAGE = 'Model number must be unique'

Examples

The following command removes the empext column from the employee table.

DROP COLUMN empext FROM employee

The following two command lines show alternative ways to remove the index from the custid column in
the transmaster table.

Oterro 11 Help Manual226

Copyright © 1982-2024 R:BASE Technologies, Inc.

DROP INDEX custid IN transmaster
DROP INDEX transmaster.custid

The following command removes from the database all rules with the message 'Model number must be
unique.'

DROP RULE WITH 'Model number must be unique'

The following command removes any rule from the product table that starts with the message 'Model
number.' You can use the wildcard character for MANY (%) in a message.

DROP RULE FOR product WITH 'Model number%'

The following command removes the cursor named cursor1 from memory.

DROP CURSOR cursor1

6.7 F

6.7.1 FETCH

Use the FETCH command to position the cursor on a row specified by the DECLARE CURSOR command,
and place values from the columns into global variables.

Options

ABS n
The value n is the nth row in the cursor list. The current cursor location is not relevant. Positive numbers
count from the first row in the list. Negative numbers force an end-of-data condition. This option applies
only to scrolling cursors, which are defined with the DECLARE CURSOR command.

cursorname INTO
Names the cursor from which to fetch data into the specified variable list.

FIRST
Specifies the first row in the cursor list. This option applies only to scrolling cursors, which are defined
with the DECLARE CURSOR command.

INDICATOR ind_var
Stores the status of the variable: non-null (0) or null (-1).

LAST
Specifies the last row in the cursor list. This option applies only to scrolling cursors, which are defined
with the DECLARE CURSOR command.

NEXT
Specifies the next entry the cursor points to. This option applies only to scrolling cursors, which are
defined with the DECLARE CURSOR command.

R:BASE Database Commands 227

Copyright © 1982-2024 R:BASE Technologies, Inc.

PRIOR
Specifies the prior entry the cursor points to. This option applies only to scrolling cursors, which are
defined with the DECLARE CURSOR command.

REL n
Moves the cursor n rows. Positive integers move forward, and negative integers move backwards. For
example, if n is 5, the cursor moves forward 5 rows. This option applies only to scrolling cursors, which
are defined with the DECLARE CURSOR command.

varname
Specifies a variable name, which must be unique among the variable names within the database. The
variable name is limited to 128 characters.

About the FETCH Command

FETCH moves the cursor to the next available row referred to by the DECLARE CURSOR command and
also accommodates scrollable cursors specified by DECLARE CURSOR. FETCH retrieves the values of
columns in the order in which the columns were specified by DECLARE CURSOR. The LIST CURSORS
command lists all the defined cursors.

FETCH cursorname without any variable specification will retrieve the next row from the cursor. Use the
SET VAR varname WHERE CURRENT OF cursorname to retrieve the columns you need.

Using the Sqlcode Variable

You must check the sqlcode variable with each use of FETCH to verify that all rows specified by DECLARE
CURSOR have been found. Use the WHENEVER sqlcode command to check for SQL processing errors
other than data-not-found errors.

Use WHENEVER NOT FOUND to check for a data-not-found errors. When you use the WHENEVER NOT
FOUND command, data-not-found error checking is automatic; however, you must use the LABEL
command. When a data-not-found error occurs, control passes to the command line specified by the
LABEL command and the subsequent error-handling commands.

Using Indicator Variables

If the data contains null values, use indicator variables to capture the status of a value. If you do not use
indicator variables, R:BASE displays an error message when it encounters a null value, but produces no
rows.

Placing a Value into a Numeric Variable

If you use FETCH to place a value into a variable that has not been previously defined and has a
NUMERIC data type, then that variable acquires the precision and scale of the column from which the
value is fetched.

Using the FETCH Command Without Variable Specification

Using FETCH cursorname without any variable specification will retrieve the next row from the cursor.
Use the SET VAR varname WHERE CURRENT OF cursorname to retrieve the columns you need.

Example

The following command lines fetch every other row from a table.

DROP CURSOR C1
DECLARE c1 SCROLL CURSOR FOR SELECT transid, transdate, +
 netamount FROM transmaster ORDER BY netamount DESC
OPEN c1
FETCH c1 INTO vtransid ind1, vtransdate ind2, vnetamount ind3
SELECT COUNT(*) INTO vtotcount i1 FROM transmaster
SET VAR vcount INT=0
WHILE sqlcode <> 100 THEN
 SET VAR vcount = (.vcount+1)

Oterro 11 Help Manual228

Copyright © 1982-2024 R:BASE Technologies, Inc.

 WRITE 'Total count', .vtotcount, 'Cursor count', .vcount
 --fetch every other row
 FETCH REL 2 FROM c1 INTO vtransid int1, +
 vtransdate ind2, vnetamount ind3
ENDWHILE
CLOSE C1
DROP CURSOR C1

6.8 G

6.8.1 GET

Retrieves a Stored Procedure.

Options

filename
The name of the ASCII text format file the Stored Procedure is placed in.

LOCK
Locks the procedure so it cannot be locked or unlocked by another user. When a procedure is locked,
only the user placing the lock can replace the procedure. The NAME setting is used for identification of
the user.

procname
The name of the procedure to retrieve.

About the GET Command

The GET command is used to read a Stored Procedure from the database into an ASCII file. If the LOCK
option is used with the GET command, the procedure cannot be replaced by using the PUT command.

Rows are copied, not removed, from the source.

Example

The following command retrieves the SetOrderID procedure and places it into a file name SetOrdID.STP.

GET SetOrderID TO SetOrdID.STP

The following series of commands will retrieve the CreateTempTabs procedure and place it into a file
name TempTabs.STP, then Edit the file, and finally replace the Stored Procedure from the file with an
updated version.

GET CreateTempTabs TO TempTabs.STP
RBE TempTabs.STP
PUT TempTabs.STP AS CreateTempTabs

Note: The STP file extension is not required by R:BASE it is merely a suggestion for a meaningful
naming convention.

R:BASE Database Commands 229

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.8.2 GOTO

Use the GOTO command in a program to pass control to the commands following the LABEL command.

Option

lblname
Specifies a 1 to 18 character name that labels a line to skip to when a GOTO command is executed in a
command or procedure file.

About the GOTO Command

You should limit the use of the GOTO command because GOTO runs more slowly than other R:BASE
control structures. Instead, when possible, use a WHILE loop, SWITCH structure, or IF structure to build
the command-file logic. Never use GOTO to exit from a WHILE loop or SWITCH structure.

Using the LABEL Command with GOTO

GOTO must have a corresponding LABEL command within the same command block or file. The LABEL
command may precede or follow GOTO in the same command file or, in a procedure file, within the same
command block.

You can use a variable containing the name of the label instead of using the specific label name in the
GOTO command. To do this, you must use a dot or ampersand variable to tell R:BASE to use the
contents of a variable, rather than the variable name as the label name.

Examples

The following example uses a dotted variable containing the name of the label instead of using the
specific label name in the GOTO command. If the variable was not a dotted variable, R:BASE would
search for a label named vlabel. Because it is a dotted variable, R:BASE looks for the correct label name
label1.

SET VARIABLE vlabel = 'label1'
GOTO .vlabel

The GOTO lexit command in the following example causes the commands following the ENDIF command
to be skipped and the QUIT TO command to be run. The only way the commands between the IF
structure and LABEL lexit command would be executed would be if the value of v1 is not greater than the
value of .v2.

IF v1 > .v2 THEN
 GOTO lexit
ENDIF
 .
 .
 .
LABEL lexit
QUIT TO caller

Oterro 11 Help Manual230

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.8.3 GRANT

Use the GRANT command to assign privileges to users of a table or view.

Options

,
Indicates that this part of the command is repeatable.

ALL PRIVILEGES
Grants all user privileges on the specified table, or on a view that can be updated.

ALTER
Grants permission to alter specific tables.

CREATE TO
Grants permission to users to create tables using the CREATE TABLE command. Users who have been
granted permission to use this command have all privileges on the tables they create, including the WITH
GRANT OPTION. However, users do not have privileges on any other tables in the database unless they
are specifically granted permission by the owner.

DELETE
Grants permission to remove rows from the specified table or from a view that can be updated.

INSERT
Grants permission to add rows to the specified table or to a view that can be updated.

ON tblview
Specifies a table or view.

PUBLIC
Grants specified user privileges to all users.

REFERENCES
Grants permission to create a table with a foreign key that references a table with a primary key.

SELECT
Grants permission to display or print data for the specified table or view.

TEMPORARY
Grants permission to users to create temporary tables. Users who have been granted permission to use
this command have all privileges on the temporary tables they create, including the WITH GRANT
OPTION. However, users do not have privileges on any other tables in the database unless they are
specifically granted permission by the owner.

R:BASE Database Commands 231

Copyright © 1982-2024 R:BASE Technologies, Inc.

UPDATE (collist)
Grants permission to change the values of columns in the specified table or a view that cannot be
updated. If you do not include the optional (collist), the user can update all columns in the table. If you
list columns, the user can update only the specified columns.

userlist
Grants specified user privileges to listed users. You must separate user identifiers with a comma (or the
current delimiter). For a value with spaces, the userid must be enclosed in quotes.

userlist, PUBLIC
Grants specified user privileges to listed users and PUBLIC. Users in userlist can retain their user
privileges if user privileges granted to PUBLIC are revoked. If, for example, Ralph, Sam, Jane, and
PUBLIC have been granted certain user privileges, revoking those privileges from PUBLIC would not
affect the three listed users. You must separate the user identifier with a comma (or the current
delimiter). For a value with spaces, the userid must be enclosed in quotes.

WITH GRANT OPTION
Allows the specified users to pass the granted user privileges to other users. When you use the LIST
ACCESS command, an asterisk is displayed in front of the user privilege to show a user can grant the
assigned user privilege to others; for example, *SELECT means a user has permission to display or print
data for specified tables or views, and can grant SELECT rights to other users.

About the GRANT Command

As the database owner, you must first set your own user identifier. After setting your user identifier, you
can assign privileges to other users for the tables or views in your database. You must specifically grant
privileges to other users. You can assign privileges for a table to individual users, to PUBLIC, or to both.
Each user can have a different set of user privileges for the same table, and you can grant a user the
right to grant user privileges to others. You can set your user identifier with the RENAME OWNER
command and assign user privileges to other users by using the GRANT command.

In R:BASE for Windows you can also set your user identifier by choosing Utilities: Set User ID and
Password. To assign user privileges to other users, choose the User Privileges option from the
Utilities menu.

In R:BASE for DOS, you can also set a user identifier and assign access rights in RBDefine; enter the
RBDEFINE command at the R> Prompt.

Granting User Privileges

You grant user privileges or access rights on tables or views, however, UPDATE rights must be granted at
the column level and CREATE rights must be granted at the database level. If you assign more than one
user privilege in a single GRANT command, separate the user privileges with a comma (or the current
delimiter).

You can grant the following user privileges: ALL PRIVILEGES, ALTER, CREATE, DELETE, INSERT,
REFERENCES, SELECT, and UPDATE; however, you can grant only the SELECT user privilege on views
that cannot be updated.

Using User Identifiers and Passwords

A user identifier can be any unique string that uniquely identifies a user to the system. A user identifier
can be of 128 characters (or less). To maximize security, create user identifiers that are difficult to
guess-such as a random string of letters and numbers. Users can assign passwords to their user
identifiers for an added level of security. For information about users assigning passwords see SET USER.

In a database where users have been assigned rights, printing reports requires one of these conditions:

· A user has been granted SELECT privileges on the driving table or view and any look-up tables.
· A user has been granted SELECT privileges or ALL PRIVILEGES on all tables used for the report.
· PUBLIC has been granted SELECT privileges on the driving table or view.
· PUBLIC has been granted SELECT privileges or ALL PRIVILEGES on all tables used for the

report.

Oterro 11 Help Manual232

Copyright © 1982-2024 R:BASE Technologies, Inc.

The only exception to this system of assigning rights is password-protected forms. Passwords assigned to
forms, override user privileges assigned with the GRANT command. If a form has not been assigned a
password, the user privileges you granted to the tables associated with the form are in effect.

Once R:BASE determines that a user can have access to a password-protected form, R:BASE does not
verify user privileges on the underlying tables. Therefore, access to a password-protected form overrides
table-level user privileges, making it possible for a user who does not have user privileges on a table to
modify the information in that table.

Creating New Tables

To create new tables in a database, a user must be assigned the CREATE user privilege. R:BASE assigns
all user privileges to the user for all tables created, including the GRANT user privilege.

A user must be assigned the SELECT user privilege to create a new table from existing tables using the
PROJECT command. R:BASE assigns users who use these commands all user privileges on the new table.
These user privileges do not include the GRANT user privilege.

Creating Views

CREATE VIEW also requires the SELECT user privilege on the existing tables. R:BASE assigns users who
create views the same user privileges they have on the source table. For views that cannot be updated,
R:BASE only assigns users the SELECT user privilege.

Command Authorization Requirements
The following three tables list R:BASE commands and the user privileges they require.

R:BASE Commands that Require the SELECT Access Right

Command SELECT Access Right on...

CREATE VIEW Component tables

DECLARE CURSOR Table

FETCH Table

OPEN CURSOR Table

PROJECT Table 1

SELECT Table

SET VARIABLE * Table

UNLOAD DATA Table

* SET VARIABLE requires the SELECT user privilege only when the value of the variable is derived from

a column.

R:BASE Commands that Require the UPDATE User Privilege

Command UPDATE User Privilege on...

CREATE INDEX Column

UPDATE Column list

R:BASE Commands that Require Other User Privileges

Command User Privilege Access on...

DELETE DELETE Table or single-table view.

INSERT INSERT Table or single-table view, without calculations.

The following table lists the user privileges and the commands that use them. Some commands appear
under more than one user privilege.

User Privileges for R:BASE Commands

Access Right R:BASE Commands that Require The Access Right

ALTER ALTER TABLE AUTONUM DROP COLUMN

CREATE ALTER TABLE DROP REVOKE 1

AUTONUM GRANT 1 RULES

R:BASE Database Commands 233

Copyright © 1982-2024 R:BASE Technologies, Inc.

COMMENT ON PACK UNLOAD ALL

CREATE TABLE RELOAD UNLOAD STRUCTURE

RENAME

Database owner's
user identifier

ALTER TABLE DROP REVOKE 1

AUTONUM GRANT 1

COMMENT ON PACK RULES

CREATE TABLE RELOAD UNLOAD ALL

RENAME UNLOAD STRUCTURE

DELETE DELETE

INSERT INSERT LOAD

REFERENCES LOAD INSERT UPDATE

SELECT SET VARIABLE 4 FETCH SELECT

CREATE VIEW PROJECT UNLOAD DATA

DECLARE CURSOR

UPDATE CREATE INDEX UPDATE

1. GRANT and REVOKE do not require the database owner's user identifier for an user privilege that
includes GRANT permission.

2. Form passwords override user privileges assigned with the GRANT command. If a form does not
have a password, the INSERT, DELETE , SELECT, or UPDATE user privileges are required for the
underlying tables.

3. Any user privilege granted allows users to list all tables for which they have user privileges.

4. SET VARIABLE requires the SELECT user privilege only when the value of the variable is derived
from a column.

Revoking User Privileges

The database owner can remove user privileges with the REVOKE command. The syntax for the REVOKE
command is the same as the syntax for the GRANT command. If you issue the REVOKE ALL PRIVILEGES
command without specifying a table, R:BASE revokes all user privileges including ALTER and CREATE.

Examples

The following command grants user privileges to display the view named SLSView to a specific user-Jane,
and to all users-PUBLIC.

GRANT SELECT ON SLSView TO Jane, PUBLIC

The following command grants user privileges to add or remove information to or from the TransMaster
table to any user entering the user identifier Sam or Ralph.

GRANT INSERT, DELETE ON TransMaster TO Sam, Ralph

The following command grants user privileges to display and enter information in the TransMaster table.
Also, the command allows any user entering the user identifier Jane to pass the SELECT and INSERT user
privileges on to other users.

GRANT SELECT, INSERT ON TransMaster TO Jane WITH GRANT OPTION

The following command grants the user Abe, who is not the database owner, permission to alter the
Customer table.

GRANT ALTER ON Customer TO Abe

The following command line grants the user Abe, who is not the database owner, permission to create
tables.

GRANT CREATE TO Abe

Oterro 11 Help Manual234

Copyright © 1982-2024 R:BASE Technologies, Inc.

The following command line grants the user Noah permission to create temporary tables.

GRANT TEMPORARY CREATE TO Noah

6.9 I

6.9.1 IF/ENDIF

Use an IF...ENDIF structure in a command file to cause a block of commands to be run when the
specified conditions are met.

Options

condlist
Lists a set of conditions that combine to form a statement that is either true or false. Conditions are
combined with the connecting operators AND, OR, AND NOT, and OR NOT.

else-block
Contains one or more R:BASE commands to execute when the conditions specified in condlist are false.

then-block
Contains one or more R:BASE commands to execute when the conditions specified in condlist are true.

About the IF...ENDIF Command

When the conditions in an IF...ENDIF structure are true, R:BASE runs all the commands between THEN
and ELSE, or if the ELSE option is not included, between the THEN and ENDIF.

If you use the ELSE option and the conditions are false, R:BASE runs the block of commands between the
ELSE and the ENDIF. If you do not use the ELSE option and the conditions are false, R:BASE runs the
command line immediately after ENDIF.

IF...ENDIF structures can be nested with other IF...ENDIF structures.

IF...ENDIF structures can be on a single line in a command file. You cannot put an IF...ENDIF structure on
a single line when any of the following occur in a command file:

· The last command in the then-block is QUIT.
· The structure contains an else-block.

Using Conditions in an IF...ENDIF Structure

The conditions for an IF...ENDIF structure are listed in the table below.

Condition Description

varname IS NULL The value of the variable is null.

varname IS NOT NULL The value of the variable is not null.

varname CONTAINS 'string' The variable has a TEXT data type and contains a 'string'
as a substring in the variable value.

varname NOT CONTAINS 'string' The variable has a TEXT data type and a 'string' is not
contained as a substring in the variable value.

varname LIKE 'string' The variable equals a 'string.' A 'string' can contain
wildcards.

R:BASE Database Commands 235

Copyright © 1982-2024 R:BASE Technologies, Inc.

varname NOT LIKE 'string' The variable does not equal the 'string'. A 'string' can
contain wildcards.

varname BETWEEN value1 AND value2 The value of the variable is greater than or equal to
value1 and less than or equal to value2. The variable and
the values must be the same data type.

varname NOT BETWEEN value1 AND value2 The value of the variable is less than value1 or greater
than value2. The variable and the values must be the
same data type.

varname IN (valuelist) The value of the variable is in the value list.

varname NOT IN (valuelist) The value of the variable is not in the value list.

item1 op item2 Item1 has the specified relationship to item2. Item1 can
be a column name, value, or expression; item2 can be a
column name, value, or expression.

The valid operators (op) for the conditions in an IF...ENDIF structure are listed in the table below. Do not
use wildcard characters with these operators.

Operator Description

= Equals

<= Less than or equal to

>= Greater than or equal to

< Less than

> Greater than

<> Not equal

An expression can be substituted for the first variable in each of the conditions. The second variable in
the comparison must be dotted so that the value of the variable is used, not the variable name.

Wildcards can be used with LIKE or NOT LIKE (for example, varname LIKE 'string%').

If you use multiple AND and OR operators, you must enter them in the correct order, or use parentheses
to obtain the desired result. If SET AND is on (the default setting) conditions connected by AND are
evaluated first; then conditions connected by OR are evaluated.

Examples

The following command lines show three nested IF...ENDIF structures.

IF vqtyord > .vlastqty THEN
 IF vqtyord <> 0 THEN
 IF vchng > 0 AND vbackord IS NOT NULL THEN
 .
 .
 .
 ELSE
 .
 .
 .
 ENDIF
 ENDIF
 ENDIF

The following example shows an IF...ENDIF structure on a single line.

IF v2 = 0 THEN ; SET VARIABLE v1 = (.v1 + 1) ; ENDIF

Oterro 11 Help Manual236

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.9.2 INSERT

Use the INSERT command to add data to a table or view without using a data-entry form.

Options

(collist)
Specifies a list of one or more column names, separated by a comma (or the current delimiter). In an
SQL command, any column name in the list can be preceded by a table or correlation name and a period
(tblname.colname).

INTO tblview
Specifies the table or view name (views must be updatable).

NUM
NONUM
NUM specifies that autonumbering columns will be numbered as they are inserted. NONUM turns off
autonumbering while inserting, thereby allowing inserting of a specific value for autonumber columns.
The default is NUM.

SELECT clause
Finds values in a table, tables, or view to insert into the table or view specified by the INTO tblview option
and the columns specified by the collist option.

VALUES (vallist)
Specifies a list of values to insert into the table specified by the INTO tblview option and the columns
specified by the collist option. Separate values with a comma or the current delimiter.

For these data types... Use this format for vallist

All data types except BIT, BITNOTE,
LONG VARBIT, and VARBIT

'string' or value

BIT, BITNOTE, LONG VARBIT, LONG
VARCHAR, VARBIT, and VARCHAR

['filename.ext'] or ['filename.ext', filetype, offset, length]
Note: When you use VARCHAR, the filetype is always
TXT. When you use VARBIT, BIT, and BITNOTE, filetype
refers to the standard graphical file types.

About the INSERT Command

The INSERT command assigns a default value of null to any column not named in the collist unless a
default value has been assigned to a column with the CREATE TABLE or ALTER TABLE command.

To ensure that rules are checked while adding data with the INSERT command, SET RULES ON before
running the INSERT command.

The setting of the SET ZERO command affects the calculation of numeric computed columns. To have null
values treated as zeros in expressions, set ZERO on. When ZERO is set off, if the value of a column used
in a expression is null, the computed value will be null.

You cannot insert values into the table used in the SELECT clause.

To ensure that data is placed in the intended column, use the following guidelines:

· Do not embed commas within entries for CURRENCY, DOUBLE, INTEGER, NUMERIC, or REAL
data types. R:BASE automatically inserts commas and the current currency symbol.

· When values for CURRENCY, DOUBLE, NUMERIC, or REAL or data types are decimal fractions,
you must enter the decimal point. When values are whole numbers, R:BASE adds a decimal
point for you at the end of the number. R:BASE adds zeros for subunits in whole currency

R:BASE Database Commands 237

Copyright © 1982-2024 R:BASE Technologies, Inc.

values; For example, using the default currency format, R:BASE loads an entry of 1000 as
$1,000.00.

· When values for NOTE or TEXT data types contain commas, you can either enclose the entries
within quotes, or use SET DELIMIT to change the default delimiter (comma) to another
character.

· When values for NOTE or TEXT data types contain single quotes ('), and you are using the
default QUOTES character ('), use two single quotes ('') in the text string. For example, 'Walter
Finnegan''s order.'

· When a value you specify for a column is not the same data type as the column's data type,
R:BASE displays an error message and you need to re-enter the entire row.

· When values for NOTE or TEXT data types exceed the maximum length of a column, R:BASE
truncates the value and adds it to the table. A message is displayed that tells you which row has
been truncated.

Inserting an Autonumbered Column

When you use INSERT to add a row, INSERT assigns the next available number to autonumbered
columns in the table. Therefore, omit autonumbered columns and their values from a collist. Also, if you
use the SELECT option, omit an autonumbered column from the collist. If a value is included for an
autonumbered column that was omitted from the column list, R:BASE does not run the command
because it cannot identify which column to load.

Inserting a Computed Column

Because a computed column's value is calculated, you cannot insert a new value. Omit computed
columns from a collist or, if you are adding data to all columns, do not use a collist and do not specify a
value for the computed column. R:BASE will skip the computed column when the row is inserted.

Examples

In the following example, the sales table has three columns, col1, col2, and col3; and col2 is a computed
column. To insert a row, you would only specify values for col1 and col3. In this example, the value for
col1 is 100, and the value for col3is 200.

If the expression for col2 was (col1 + 200), then col2 would have the value 300 when the row is inserted.

INSERT INTO sales VALUES (100, 200)

In the following example, a vallist adds a new row to the product table, filling the model, prodname,
proddesc, and listprice columns.

INSERT INTO product (model, prodname, proddesc, listprice) +
 VALUES ('PB3060', 'Portable Advanced PC', 'System-Single +
 Drive w/Hard Disk-Portable', 3795)

The following command uses a vallist with global variables to insert the values from variables v1, v2, and
v3 into the bonusrate table.

SET VARIABLE v1 CURRENCY = 50000, v2 CURRENCY = 75000, +
 v3 REAL = .10
INSERT INTO bonusrate VALUES (.v1, .v2, .v3)

The following example adds rows to customer table selected from temp table. It adds data into the
company and custphone columns. The columns taken from the temp table can have different column
names, the data types must be the same, and the order and number of columns in the column list of the
source table (designated by SELECT) must match the column list of the destination table (designated by
INTO).

INSERT INTO customer (company, custphone) +
 SELECT cname, phone FROM temp

Oterro 11 Help Manual238

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.10 L

6.10.1 LABEL

In a GOTO or WHENEVER statement, use the LABEL command to identify the command line to which
control should be passed.

Option

lblname
Specifies a 1 to 18 character name that labels a line to skip to when a GOTO command is executed in a
command or procedure file.

MODAL
Allows an EEP command block to launch a Form, Label or Report in a designer. After making appropriate
changes, you will have to save the changes and close the designer in order to continue the next
command in your EEP.

About the LABEL Command

After a command file is run once, R:BASE stores the labels in memory. When the command file is run
again, R:BASE retrieves the location of a label when the GOTO or WHENEVER is run. However, if the
GOTO or WHENEVER command is going to be run only once, place the LABEL command below the GOTO
or WHENEVER command because it is more efficient for R:BASE to search downward in the command file
for the matching label.

Example

In the following example, if the vctrvar variable in the IF...THEN statement is equal to 999, control passes
to the command lines following the LABEL command, which defines the endproc label. If vctrvar does not
equal 999, the command lines following the ELSE statement are performed.

IF vctrvar = 999 THEN
 GOTO endproc
ELSE
 *(commands to execute)
ENDIF

.
.
.

LABEL endproc
 *(commands to execute)

R:BASE Database Commands 239

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.10.2 LAUNCH

The LAUNCH command invokes or runs executable programs, as well as files associated with programs.

Options

|
The pipe character is needed when a file parameter, W (wait), or show mode is specified. The number of
pipes needed depend on the last part of the LAUNCH command being used. If only a file is being
launched and no addition portions of the LAUNCH command are being used, the pipe characters are not
needed. However, if a file is being launched and only a show mode is used, then all three pipes are
required.

CMD_EXPLORE
Displays the Windows Explorer from the specified folder.

CMD_FIND
Initiates a search from the specified folder.

CMD_PRINT
Prints a file to the default printer, or displays a print dialog, based upon file type.

filename.ext
The name of file which has a corresponding association registered with Windows. If the file does not
exist, an error will be displayed.

filespec
The name of the file to print. Based upon the file type, the file will be sent directly to the default printer,
or will display in a print dialog, If the file does not exist, or if the file is not printable, an error will be
displayed.

path
Specifies the directory name.

<parameters>
To specify additional parameters associated to the launched program.

show mode
Specifies how the launched program or operation is displayed. The show modes may not be supported by
some programs.

· NORMAL - launches the program in a normal window
· MINIMIZED - launches the program in a minimized window
· MAXIMIZED - launches the program in a maximized window
· HIDE - launches the program, but it is hidden from display

W
To specify the "Wait Until Finished" option.

About the LAUNCH Command

LAUNCH command is used to execute (or LAUNCH) another application or process, from within R:BASE
for Windows. Based upon the extension for the FileName, a corresponding program associated to it within

Oterro 11 Help Manual240

Copyright © 1982-2024 R:BASE Technologies, Inc.

Windows will open when launching the file. For example, setting FileName to 'README.TXT' will invoke the
Windows NotePad when launched. If a full path is not specified, the current search path is used.

The LAUNCH command allows for command line parameters to be specified that will be recognized by the
program being launched. The launched application will start in the same directory as the executable file
or in the directory referenced, if specified.

The LAUNCH command also allows you to use a "Wait Until Finished" option to specify whether or not you
want R:BASE to sleep while the launched program executes or continue running. If the "Wait Until
Finished" parameter "|W", (e.g. pipe and W with no space) is added to the LAUNCH command, R:BASE
will sleep until the launched process completes. If the "Wait Until Finished" parameter "|W" is not
specified, the launched process is executed in its own thread, and the R:BASE will continue to execute.

The number of pipes needed depend on the last part of the LAUNCH command being used. If only a file is
being launched and no addition portions of the LAUNCH command are being used, the pipe characters
are not needed. However, if a file is being launched and only a show mode is used, then all three pipes
are required.

Launch Command Features:

· LAUNCH command is supported in EEPs
· If a folder path, file name, or parameter contains spaces, double quotes (") must be added.
· The LAUNCH command will execute ANY windows program as long as it is installed and the file

extension is associated within the operating system.
· No flashing screens (in and out of DOS)
· No need to use the ZIP OUT command or run batch files, etc.

Examples

Example 01:

LAUNCH charts.VBS

This will invoke VBScript:Windows Scripting Host Sample and will demonstrate how to access Excel
using the Windows Scripting Host.

Example 02:

LAUNCH MyDoc.PDF

This will invoke Adobe Reader and display the file.

Example 03:

LAUNCH c:\mydocs\ReadMe.txt |||MAXIMIZED

This will invoke the Notepad with README.TXT in a maximized window. All three pipes are required
as the "show mode" parameter is specified.

Example 04: (LAUNCHing NotePad with the "Wait Until Finished" option)

LAUNCH ReadMe.txt||W

This will invoke the Windows Notepad while R:BASE sleeps in the background. You will have to Exit
Notepad in order to get control back to R:BASE the application. Notice the two pipe characters with
no spaces right after the file name. The first pipe with no parameters and no space while the second
pipe with the "Wait Until Finished" |W option.

Example 05:

LAUNCH CMD_EXPLORE|C:\RBTI

R:BASE Database Commands 241

Copyright © 1982-2024 R:BASE Technologies, Inc.

This will launch Windows Explorer and display the contents of the C:\RBTI folder.

Example 06:

LAUNCH CMD_FIND|F:\DATA

This will initiate a search from the F:\Data folder.

Example 07:

LAUNCH CMD_PRINT|C:\ReadMe.txt

this will print the ReadMe.txt file to the printer.

Example 08: (LAUNCH command with Parameters and "Wait Until Finished" parameter)

LAUNCH 'winword|"C:\Word Documents\TestFile.DOC" "/mMacroName"|W'

This will invoke the MS Word with TestFile.DOC running the MacroName macro.

This will invoke MS Word with Document.doc using MacroName as a main window while R:BASE
sleeps in the background. You will have to Exit MS Word in order to give control back to the R:BASE
window/application. Notice the additional pipe "|" symbol with "W" right after /mMacroName to
specify Wait Until Finish option.

Since the folder path contains spaces, double quotes (") are added.

Example 09:

LAUNCH CMD_PRINT|N:\Sales\OrderForm.pdf

This prints the OrderForm.pdf document.

Example 10: (To automate e-mails via R:BASE)

If you know the e-mail tags of your default e-mail program, using the LAUNCH command you could
easily achieve that task of automating e-mails.

SET VAR vMailTo TEXT = NULL
SET VAR vCustID INTEGER = 2001
SELECT ('mailto:'+EMailAddress) INTO vMailTo INDIC IvMailTo +
FROM Contacts WHERE CustId = .vCustID
LAUNCH .vMailTo

This will launch the default e-mail program with the "To:" filled in. You can follow the same logic for
other e-mail tags (e.g. Subject, Cc, Bcc, etc.).

Oterro 11 Help Manual242

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.10.3 LOAD

Use the LOAD command to add data to a table or to a single table view that can be updated.

Options

,
Indicates that this part of the command is repeatable.

AS ASCII
The AS ASCII command parameter is designed strictly for speed of operation. AS ASCII checks rules
and constraints. However, following is a list of the limitations of the AS ASCII command parameter:

· It does not check the data types; therefore, invalid data will be loaded as null values into
columns; no error messages about this conversion are displayed.

· It does not display error messages when columns must be truncated, or when excess data exists
on any line.

· It does not echo data to the screen regardless of the setting for SET ECHO.

To achieve maximum speed of loading, the data must look like the data that R:BASE unloads with the
UNLOAD DATA AS ASCII command. That is, the data must conform to the following:

· The carriage return/line feed characters define the end of the line for a given row.
· The maximum row size is 32,768 characters.
· The data cannot include variables.
· The data cannot include comments.

AS FORMATTED USING
Loads data from an ASCII file when the data is formatted in fixed column locations, with the following
restrictions:

· The carriage return/line feed characters define the end of the line for a given row.
· The maximum row size is 32,768 characters.
· The data cannot include variables.
· The data cannot include comments.

R:BASE Database Commands 243

Copyright © 1982-2024 R:BASE Technologies, Inc.

· You must specify the name of each column of the table to be loaded, and the starting and ending
position of its data in the line, which is specified in the USING clause of this command.

AS CSV
Loads data from a comma-separated values (CSV) file. AS CSV checks rules and constraints. The
following is a list of the limitations of the AS CSV command parameter:

· It does not check the data types; therefore, invalid data will be loaded as null values into
columns; no error messages about this conversion are displayed.

· It does not display error messages when columns must be truncated, or when excess data exists
on any line.

· It does not echo data to the screen regardless of the setting for SET ECHO.

To achieve maximum speed of loading, the data must look like the data that R:BASE unloads with the
UNLOAD DATA AS CSV command. That is, the data must conform to the following:

· The carriage return/line feed characters define the end of the line for a given row.
· The maximum row size is 32,768 characters.
· The data cannot include variables.
· The data cannot include comments.

CHECK
NOCHECK
CHECK turns on rule checking. When rule checking is on, R:BASE checks input against data validation
rules. NOCHECK turns off rule checking. CHECK and NOCHECK override the current setting of the SET
RULES condition. The default is CHECK.

colname start end
Specifies the name of a column in the table and the starting and ending position of its data in the line;
this option is used with the AS FORMATTED option.

data-block
Includes lines of data to be loaded, as well as the LOAD subcommands.

For these data types... Use this format for data-block

All data types except BIT, BITNOTE,
LONG VARBIT, and VARBIT

'string' or value

BIT, BITNOTE, LONG VARBIT, LONG
VARCHAR, VARBIT, and VARCHAR

['filename.ext'] or ['filename.ext', filetype, offset, length]
Note: When you use VARCHAR, the filetype is always
TXT. When you use VARBIT, BIT, and BITNOTE, filetype
refers to the standard graphical file types.

FILL
NOFILL
FILL makes null any columns that have not been assigned values. All of the missing values must be at
the end of the row. If a rule specifies that a column requires an entry other than null, do not use FILL.
NOFILL turns off FILL and requires a value for each column. The default is NOFILL.

FOR n ROWS
Directs R:BASE to stop processing after loading n rows, where n is a positive whole number. In the fourth
syntax diagram, END is not used if FOR n ROWS is included.

FROM filespec
Loads data into the specified table with data from an external ASCII delimited file.

NUM
NONUM
NUM specifies that autonumbering columns will be numbered as they are loaded. NONUM turns off
autonumbering while loading, thereby allowing loading of a specific value for autonumber columns. The
default is NUM.

tblview
Specifies a table or view name to load.

USING collist

Oterro 11 Help Manual244

Copyright © 1982-2024 R:BASE Technologies, Inc.

Specifies the column(s) to use with the command.

WITH PROMPTS
Loads data into the specified table from keyboard entries. R:BASE asks for the values of each column by
displaying the column name and its data type. To end the loading session, press [Esc].

About the LOAD Command

You cannot load data into a multi-table view.

Instead of using LOAD, you can also use INSERT, the Data Editor, or a Form to add data to a table.

You can use the LOAD command to load data into R:BASE from a file that was not created by R:BASE.
The file must be an ASCIIfile, either delimited or fixed.

The LOAD command will differentiate between END and 'END'; FILL and 'FILL'; NOFILL and 'NOFILL';
CHECK and 'CHECK'; NOCHECK and 'NOCHECK'; NUM and 'NUM'; NONUM and 'NONUM'. So, make sure
to use the proper syntax when creating LOAD statements.

To ensure that data is placed in the intended column, use the following guidelines:

· Do not embed commas within entries for CURRENCY, DATE, DATETIME, DOUBLE, INTEGER,
NUMERIC, or REAL data types. R:BASE automatically inserts commas and the current currency
symbol.

· When values for CURRENCY, DOUBLE, NUMERIC, or REAL or data types are decimal fractions,
you must enter the decimal point. When values are whole numbers, R:BASE adds a decimal
point for you at the end of the number. R:BASE adds zeros for subunits in whole currency
values. For example, using the default currency format, R:BASE loads an entry of 1000 as
$1,000.00.

· When values for NOTE or TEXT data types contain commas, you can either enclose the entries
within quotes, or use SET DELIMIT to change the default delimiter (comma) to another character.

· When values for NOTE or TEXT data types contain single quotes ('), and you are using the
default QUOTES character ('), use two single quotes ('') in the text string. For example, 'Walter
Finnegan''s order.'

· When a value you specify for a column is not the same data type as the column's data type,
R:BASE displays an error message and you need to re-enter the entire row.

· When values for NOTE or TEXT data types exceed the maximum length of a column, R:BASE
truncates the value and adds it to the table. A message is displayed that tells you which row has
been truncated.

Loading with a USING Clause
A USING clause is helpful when you do not have all the information that is to be added to a table. The
following example lets you enter some information for a product but does not require that all columns be
entered. The model and listprice columns are the first and last columns in the product table. The
prodname and proddesc columns are not included in the command and are loaded with null values. You
can later edit the product table to enter data into the columns that have null values.

LOAD product USING model listprice

Loading with the CHECK Option
The SET RULES condition does not have any effect on the CHECK option because CHECK has precedence
over a RULES setting. When RULES is set off, the CHECK option still verifies data entry against existing
rules.

When a user identifier has been assigned to the database owner, you must enter the owner's user
identifier with the CONNECT or SET USER command before you use the CHECK or NOCHECK option.
R:BASE does not accept the CHECK or NOCHECK option unless the owner's user identifier has been
entered.

Loading Computed Columns
You cannot load data directly into a computed column. After you load the column values that are used to
calculate the computed column, R:BASE fills the computed column with the computed value.

R:BASE Database Commands 245

Copyright © 1982-2024 R:BASE Technologies, Inc.

The setting of the SET ZERO condition affects the calculation of numeric computed columns. To have null
values treated as zeros in expressions, set ZERO on. When ZERO is set off, if the value of a column used
in a expression is null, the computed value will be null.

Loading Negative CURRENCY values
When loading negative CURRENCY values into a table, the format must include the hyphen, i.e -$500.00.
Negative CURRENCY values encased in parenthesis are not recognized, e.g. ($500.00).

Loading with Prompts
When you run the LOAD command using prompts, you load one row of data at a time into the table you
specified. (See Example 1). For each new row you add, R:BASE displays the name and data type of the
row's column as prompts. At each prompt, you enter the value that you want the column to contain. You
are prompted for each column in the row beginning with the first column, unless you used a USING collist
clause to limit the number of the columns to load, or to change the order in which the columns are
loaded. Any columns not listed in the collist are given null values when the rows are entered.

When you load data with prompts, the default length for a text entry is 80 characters. To enter columns
with a NOTE or TEXT data types that contain more than 80 characters, load the data without prompts,
make a custom data-entry form, or set the WIDTH so you can enter more characters.

R:BASE does not prompt you for computed or autonumbered column values.

Loading without Prompts
Loading without prompts is faster but requires that you remember the order of the columns in the table.
When you load without using prompts and not from an ASCII file, the LOAD command provides its own
distinctive prompt. The following options can be entered at this prompt: CHECK, NOCHECK, FILL, NOFILL,
NUM, and NONUM.

Loading from an ASCII File
Use the LOAD command from the R> Prompt or a command file to load data into an existing table from
both delimited and fixed field ASCII files. Each record in the ASCII file corresponds to one row of data in
a table, and each item of data in a record corresponds to one column value in a row. Therefore, organize
data in the file in the same order as the columns in the table to be loaded.

Items of data in a line of the ASCII file must be delimited to be properly placed within the columns of a
row. The delimiter character must be the same as the current delimiter character specified with the SET
DELIMIT setting. (The default delimiter is a comma.) R:BASE also accepts a blank space as a delimiter,
regardless of the setting of the DELIMIT setting.

Data can be loaded in a fixed-field formatted ASCII file with the AS FORMATTED option. The column
name and the start and end positions within the file must be specified for each value in the row of data
that is to be loaded. When the start and end positions are specified, the delimiter character does not
have any effect because the start and end positions for each column identify the data.

When loading from a file, be sure that the current null symbol is not a blank. If the first four characters of
a field in a file are blank, R:BASE adds the column as a null column and does not read any additional
characters that make up the field value.

When loading data from an ASCII file, make sure the file meets the following requirements listed in the
table below.

Elements in an ASCII File Requirement

INTEGER data types Items of data to be loaded into columns with INTEGER data types
cannot contain internal commas unless the item is enclosed in quotes.
The default QUOTES character in R:BASE is a single quote ('); if your
ASCII file uses double quotes ("), change the QUOTES setting before
you load the file. If the file does not have quotes around the integer
values containing commas, you must edit the ASCII file to remove any
commas from the integer values, or enclose each integer value in
quotes.

Embedded punctuation Items of data containing ampersands, commas, embedded blanks, plus
signs, equal signs, or semicolons must be enclosed in quotes if they
are to be loaded into columns with a TEXT or NOTE data type. The
default QUOTES character in R:BASE is a single quote ('); if your ASCII

Oterro 11 Help Manual246

Copyright © 1982-2024 R:BASE Technologies, Inc.

file uses double quotes ("), change the QUOTES setting before you load
the file.

Embedded quotes Items of data requiring quotes can also contain embedded quotes. For
example, the item 'Basic' Keyboard contains both a blank space and
embedded quotes. Using single quotes ('), which is the default QUOTES
setting, to add enclosing quotes, the item would looks like this: '''Basic''
Keyboard'

Currency R:BASE automatically adds a currency symbol, commas, and zeros for
currency units. For example, using the default currency format,
R:BASE loads an entry of 1000 as $1,000.00.

Dates The SET DATE SEQUENCE command sets the sequence for the date-
dates in the file are loaded if the dates match the current date
sequence established with the SET DATE command.

Computed columns If the table being loaded has computed columns and the file contains
values for the computed columns, R:BASE tries to load the computed
column's value from the file into the column following the computed
column. This results in an error because the data type of the next
column might not be the correct data type, or the file will have too
many values for the table because R:BASE does not load the computed
column's value from the file.

Rules processing Unless you run the SET RULES OFF condition before loading the file,
rules processing is in effect. When an incoming data item violates a
rule, R:BASE does not load the row. Instead, R:BASE displays the
message for the rule that has been violated. To see the data that
causes a rule violation, SET ECHO ON when loading a table and use the
[Pause] key to stop the screen from scrolling when the rule violation
occurs.

Loading a Data Block
The data block shown in the diagram can include lines of data and any of the options available with
LOAD-CHECK/NOCHECK, FILL/NOFILL, and NUM/NONUM. You can intersperse the options with data lines,
and you can enter more than one option on a line if you separate the options with semicolons. However,
you cannot combine data and options on the same line.

R:BASE displays the dialog prompt to accept data-block entry. LOAD adds data to a table, row by row,
without using a data-entry form and without prompting for each data item.

You can enter the options for the LOAD command at the dialog prompt at any time during data loading.
Or you can include them on the command line, separated from the command by semicolons, as shown in
the example below. (Do not use this format in command or procedure files. All options must follow the
LOAD command on separate lines in command or procedure files.)

LOAD transdetail ; CHECK ; NUM

You can use global or system variables instead of constant values in the data block.

To enter values properly, use the following guidelines.

· Enter column values in the order that columns are defined in the table, and separate the values
with a delimiter character. The default delimiter character is the comma.

· You can enter up to 75 characters on a single line. If a row is longer than 75 characters, continue
on to the next line by typing past the end of the current line or by entering a plus (+) sign at any
point on the current line. The plus sign must be the last entry on the line. The new line will begin
with a +> prompt to indicate the continuation of the current line. If you are using this form of the
LOAD command in a command file, you must use a + to continue on the next line; the lines will
not automatically wrap.

· For other requirements on loading data, see "Loading from an ASCII File" earlier in this entry.

Examples

Example 01:
The following command line allow you to load rows containing new customer information to the customer
table. R:BASE asks with prompts for each column by column name and data type. Two columns in the
table, custid and custphone, are omitted from the list. R:BASE automatically supplies a number for the

R:BASE Database Commands 247

Copyright © 1982-2024 R:BASE Technologies, Inc.

custid column because it is an autonumbered column. R:BASE leaves the custphone column empty (null)
when data is loaded, and does not prompt for either column.

LOAD customer WITH PROMPTS USING company, +
custaddress, custcity, custstate, custzip

After the above command is run, the WITH PROMPTS option displays the message below.

If you press the [Esc] key or the "Cancel" button before you have finished entering data in a row, the
row is not added to the table. You will be prompted to add another row.

To continue, press the "Yes" button. To exit, press the "No" button or the [Esc] key.

Example 02:
The following command loads five rows of data into the customer table from CUST.DAT, a delimited
ASCII file. The data in the ASCII file must be in the same order as the columns in the customer table.
Only the first five lines from the file will be loaded:

LOAD customer FROM cust.dat FOR 5 ROWS

Example 03:
In the following example, the command line tells R:BASE to start loading data for the customer table. A
dialog prompt is displayed for each new row. Each column value would be entered in this one dialog and
separated with a comma, or the current delimiter. The legnth of the text available to fit in the dialog is
4096 characters.

LOAD customer

Example 04:
After the command line in the following example is run, R:BASE expects the next five lines entered at the
dialog prompt to contain data to be loaded into the customer table. After the fifth line of data is entered,
the loading ends. To end loading before five rows of data are entered, enter END.

LOAD customer FOR 5 ROWS

Example 05:
The following command lines show you how to load data into the company, custaddress, custcity,
custstate, and custzip columns of the customer table. The custid and custphone columns in the customer
table will not have data loaded and will be given null values.

LOAD customer FROM customer.fix AS FORMATTED +
USING company 11 50, custaddress 51 80, +
custcity 81 100, custstate 101 102, custzip 103 112

Example 06:
When you use the LOAD command, you must omit values for computed or autonumbered columns.
Instead, enter the value for the next column in the data list. In the following example, to add a row to the
transdetail table, which has a computed column, you would only enter data for the first five columns; the
sixth column is a computed column based on the fourth and fifth columns. The columns entered are
transid, detailnum, model, units, and price. The computed column is extprice and has the expression
(units * price).

LOAD transdetail

Oterro 11 Help Manual248

Copyright © 1982-2024 R:BASE Technologies, Inc.

6000,1,'CX3000',100,$1900
END

6.11 M

6.11.1 MIGRATE

The MIGRATE command is used to convert R:BASE eXtreme 9.5 (64) databases to R:BASE 11.

Options

dbname
Specifies the database to be converted.

About the MIGRATE Command

R:BASE Enterprise requires the conversion of existing 9.5 (64) database for structural changes. Once the
database is converted, it CANNOT be accessed by any previous version of R:BASE. Be sure and backup
your database before you migrate it.

6.12 O

6.12.1 OPEN

Use the OPEN command before using the cursor designated by the DECLARE CURSOR command.

Options

cursorname
Specifies a 1 to 18 character cursor name that has been previously specified by the DECLARE CURSOR
command.

RESET
Reopens a cursor with the current values of any variables referenced in the DECLARE CURSOR
statement. This improves performance by eliminating the need to re-optimize the query.

About the OPEN Command

OPEN evaluates the SELECT clause of the DECLARE CURSOR command using the current values of any
variables that it contains. Then OPEN stores that copy of the cursor definition and places the cursor
before the first row.

After you close a cursor with the CLOSE command, you can reopen it by repeating the OPEN command.
Every time you open a cursor, R:BASE reads the rows again, so that any changes you previously made
through the cursor are visible when you look at the rows.

When using the RESET option, the WHERE clause is evaluated with the current values of any referenced
variables, and the cursor is reopened without requiring a CLOSE command. The cursor is positioned at
the beginning of the result set when the FETCH command is run.

R:BASE Database Commands 249

Copyright © 1982-2024 R:BASE Technologies, Inc.

Example

The following command lines show the OPEN command with the RESET option.

 DROP CURSOR c1
 DROP CURSOR c2
 SET VAR vc1custid INTEGER
 DECLARE c1 CURSOR FOR SELECT custid FROM customer
-- Selects the transaction rows for the customer
 DECLARE c2 CURSOR FOR SELECT transid, invoicetotal +
 FROM transmaster WHERE custid = .vc1custid
-- Process the query in cursor c1 and get the first custid
 OPEN c1
 FETCH c1 INTO vc1custid IND c1ind1
 WHILE sqlcode <> 100 THEN
 -- Process the query in c2. As each row is fetched in the
 -- customer table, the custid changes; each time
 -- the "OPEN c2 RESET command" processes the c2's query it
 -- retrieves different rows
 OPEN c2 RESET
 -- Fetch the transid (invoicenumber) and invoice total amount
 FETCH c2 into vtransid, vamt
 WHILE sqlcode <> 100 THEN
 WRITE .vtransid, .vamt
 FETCH c2 into vtransid, vamt
 ENDWHILE
 FETCH c1 INTO vc1custid
 ENDWHILE
 CLOSE c1
 CLOSE c2
 DROP CURSOR c1
 DROP CURSOR c2

6.12.2 OUTPUT

Use the OUTPUT command to direct messages and results of commands to a file.

Options

ANSI

Oterro 11 Help Manual250

Copyright © 1982-2024 R:BASE Technologies, Inc.

Converts all UTF8 characters to ANSI, to use the output in programs that do not understand UTF8
characters, but does handle the ANSI characters with code values above 127. ANSI and UTF8 would not
be used simultaneously.

APPEND
Appends data to the end of an existing file without overwriting the file. If you specify APPEND when the
specified file does not exist, R:BASE creates the file with that name. APPEND and CHECK would not be
used simultaneously.

CHECK
Checks for file existence and prompts the user for confirmation before writing to it. APPEND and CHECK
would not be used simultaneously.

ENCRYPT
A 512-bit encryption method is used to obscure any output information, making it unreadable without
R:BASE and your decryption password. Immediately after using the ENCRYPT parameter in your OUTPUT
command, you will be prompted for a password. The password is limited to 32 characters. When running
encrypted files with R:BASE, you would run the file followed by the password. When opening an
encrypted file, you will be prompted for the password.

filespec
Indicates the output device. Specify a file name, with or without an extension. You can also specify a
drive and/or path.

password
Specifies the password for the encrypted file. If the password is not specified, a prompt to enter the
password will be displayed.

PDF
Creates the output as a PDF file. The filespec should use the PDF file extension.

UTF8
Adds a UTF8 BOM to the front of the output file. ANSI and UTF8 would not be used simultaneously.

About the OUTPUT Command
The SET LINES command determines how many lines to display.

Examples

Example 01:
The OUTPUT command directs output to the BACKUP.DAT file on drive C:\. The UNLOAD command sends
the data stored in the transmaster table as CSV to the file. The second OUTPUT command closes the file
and redirects output to the screen.

OUTPUT c:\backup.dat
UNLOAD DATA FOR transmaster AS CSV
OUTPUT SCREEN

Example 02:
The commands send data from the Customer table to a PDF file, and open the file with the LAUNCH
command.

OUTPUT CustomerList.PDF PDF
SELECT Company FROM Customer ORDER BY Company
OUTPUT SCREEN
LAUNCH CustomerList.PDF

Example 03:
The commands unload the company data as ASCII into an encrypted file, and checks that the file does
not already exist

OUTPUT COMPANY_DATA.DAT ENCRYPT pw1234 CHECK
UNLOAD DATA FOR Company AS ASCII

R:BASE Database Commands 251

Copyright © 1982-2024 R:BASE Technologies, Inc.

OUTPUT SCREEN

6.13 P

6.13.1 PACK

Use the PACK command on an open database to recover unusable disk space.

Options

ALL
Packs File 1 (schema information), File 2 (data), File 3 (indexes), and File 4 (large object data).

dbname
Specifies the name of the database to pack.

FOR tblname
Specifies a particular table whos indices you want to PACK.

INDEX
Use this option to PACK all indices for the currently connected database. PACK INDEX is supported in
multi-user environments.

indexname
Packs a specified index from File 3 (indexes); this option will work when STATICDB is set on. PACK
INDEX indexname is now supported in multi-user environments. This command will execute on the
currently connected database.

KEYS
Packs only File 3 (indexes).

PASSWORD
Use this option to clean out bogus rows from SYS_PASSWORDS table.

PACK PASSWORD command is also supported in a multi-user session. Database must be connected in
order to use this command.

SCHEMA
Packs only File 1 (schema information).

TABLE tblname
Packing a single table when MULTI is set ON. This parameter is very beneficial with databases that are
always is use.

WITH USER CASE
Replaces the case folding/collating tables in the database with those defined in the user configuration file.

About the PACK Command

Oterro 11 Help Manual252

Copyright © 1982-2024 R:BASE Technologies, Inc.

Disk space becomes unusable when you delete rows or indexes, remove columns or tables, or add or
modify columns with the ALTER TABLE command. To use the PACK command, a database must be open.
If the database you want to pack is not in the current directory, include the drive, path, and database
name. When you pack a database that is in a different directory, R:BASE closes any open database, then
opens the database you want to pack.

PACK requires the database owner's user identifier if the database is protected by the owner's user
identifier.

You cannot use PACK when a database is stored on a network drive and MULTI has been set on, unless
you are ONLY packing one table. Set MULTI off before packing the database.

PACK is unavailable when transaction processing is on.

Because you pack an open database, back up your database before you pack it. An interruption to a
pack could cause damage to your database.

PACK Versus RELOAD
Both the PACK and RELOAD commands recover unusable disk space; however, RELOAD requires more
disk space than PACK because RELOAD copies a database table by table, collects the rows of each table,
then reorganizes the rows on the disk.

PACK KEYS versus PACK INDEX
PACK KEYS is to be used with MULTI set OFF as it recreates a new index file with clean indexes. PACK
INDEX can be used while users are connected to the database with MULTI set ON, only adding to the
current index file. After using PACK KEYS, you should see a decrease in the index file size.

Example

The following command packs the concomp database in the RBTI directory on drive C:

PACK c:\rbti/concomp

6.13.2 PROJECT

Use the PROJECT command to create a new table from an existing table or view.

Options

*
Specifies to use all columns with the command.

ALL
Specifies to use all columns with the command.

collist
Specifies the column(s) to use with the command.

EXCEPT
Specifies the column(s) which will not be included in the projected table.

ORDER BY clause
Sorts rows of data. For more information, see ORDER BY.

R:BASE Database Commands 253

Copyright © 1982-2024 R:BASE Technologies, Inc.

SELECT clause
Specifies the columns and one or more tables or views from which to create the new table. Using the
SELECT portion it is not necessary to create a view first in order to perform PROJECT into a new table
from multiple table joins. A USING clause is not needed as all required columns are defined in the
SELECT statement.

tblname1 FROM tblview
Tblname1 is the name of the new table you want to create, and FROM tblview specifies the existing table
or view you want to copy.

TEMPORARY
Allows you to create a Temporary Table with the PROJECT command.

WHERE clause
Limits rows of data. For more information, see WHERE.

About the PROJECT Command

The new table can be a copy of an existing table, a copy of an existing table with the rows sorted in a
different order, a duplicate of a table structure without any data, or a table that contains specific rows
and columns from an existing table.

You must include the USING clause with the PROJECT command. The USING clause specifies the columns
to be included in the new table. If you want the new table to include all the columns from an existing
table, use an asterisk (*) in the clause. If you want the new table to include only specific columns from
the existing table, list them in the order you want them to appear in the new table. If you want the new
table to include all columns in a different order, list them in the order you want them to appear.

Working with Computed Columns
R:BASE copies the data from each column into the new table. If a computed column is included, R:BASE
transfers the current values in the computed column to the new table. In order to calculate computed
values in the column in the new table, R:BASE needs the column names used in the computed column's
expression. Therefore, include those column names in the USING clause before the computed column.
When you do not include those column names in the USING clause before the computed column, R:BASE
makes the computed column a regular column, assigns a data type, and displays a message suggesting
you rename the column in the new table. If you do not rename the column, the new table has a column
with the same name as the column in the original table, but does not have the designation COMPUTED.
You will not be able to use the UNLOAD command, because you cannot have a computed column and a
regular column with the same name.

Working with Autonumbered Columns
In a new table, R:BASE does not update the value in a row for the autonumber column. The autonumber
column becomes a regular column.

Removing Columns and Rows from a Table
PROJECT is also useful if you want to remove several columns or rows from a table. To delete columns
from a table, create a new table that retains the columns you want to keep, or to delete rows, create a
new table using a WHERE clause. Use the DROP command to remove the table you no longer want, then
use the RENAME command to give the new table the original table's name.

Transferring Default Column Definitions
Default column definitions are not transferred to a new table. When rows are added to the new table with
the INSERT command, they are given a null value. If you want a default column definition, define the
default column again.

Examples

The following command creates a new table that is a duplicate of the employee table.

PROJECT reps FROM employee USING *

The following command creates a table named empty that has the same structure as the prodlocation
table but contains no rows of data.

Oterro 11 Help Manual254

Copyright © 1982-2024 R:BASE Technologies, Inc.

PROJECT empty FROM prodlocation USING * WHERE LIMIT=0

The example below creates a table named gt5year. The order of the columns in the gt5year table are
specified in the USING clause. The WHERE clause specifies that only the information for employees hired
before January 1, 1984 will be selected. The ORDER BY clause sorts the rows in alphabetical order by the
employees' last names.

PROJECT gt5year FROM employee USING empfname, emplname, +
empid, empext, hiredate WHERE hiredate < '01/01/84' +
ORDER BY emplname

The following create a new table from the Staff and Departments table, with the SELECT statement to
specify the column and tables source.

PROJECT StaffDepts FROM +
SELECT T2.DepartmentID,T2.Description,T2.OwnerDept,+
T1.LastName,T1.FirstName,T1.PhoneExt,T2.DeptShape +
FROM Staff T1,Departments T2 +
WHERE T1.DepartmentID = T2.DepartmentID

6.13.3 PUT

Creates or replaces Stored Procedures into the database.

Options

argname datatype
The parameter name and data type. This portion may be repeated.

comment
An optional comment for the parameter or, if placed after RETURN, an optional comment for the entire
procedure. The comment must be enclosed in the current quote setting.

filename
The filename in ASCII text format, with full path, to load as the Stored Procedure.

procname
Specifies the procedure name. If a procedure by this name already exists in the database, an error is
generated. The procedure name is limited to 128 characters.

RETURN datatype
Determines the data type of the value returned by the procedure.

About the PUT Command

Argument List
When you load a Stored Procedure into a database, you specify arguments to be passed to it. These
arguments are used within the procedure. When the procedure is called, the number and type of
arguments passed must match the number and type specified when the procedure was stored in the

R:BASE Database Commands 255

Copyright © 1982-2024 R:BASE Technologies, Inc.

database. When an argument name is referenced in the Stored Procedure code, the argument name
must be preceded by a period unless it is a table or column name, then it must be preceded by an
ampersand (&). For example:

UPDATE &p1 SET col = 99 WHERE col = .p2

The arguments names are specified when the procedure is stored in the database with the PUT
command.

Return Values
The value to be returned by a Stored Procedure is specified in the procedure code following the keyword
RETURN. For example, RETURN 'Los Angeles'. The value returned must match the data type specified
when the procedure was stored.

Replacing a Procedure
If you are replacing an existing procedure, you must LOCK the procedure first either with the GET LOCK
or the SET PROCEDURE command. Once the procedure is locked, it is replaced by an updated file using
the PUT command. A procedure cannot be replaced unless it is locked. A procedure is automatically
unlocked when replaced with the PUT command.

Example

Use the PUT command as follows to store a command file as a Stored Procedure:

PUT INS.RMD AS SP_ContCheck p1 INT, p2 TEXT RETURN INTEGER

The contents of INS.RMD could be something like:

--INS.RMD
IF (.p1 > 105) THEN
INSERT INTO contact (custid, contlname) VALUES (.p1, .p2)
RETURN 1

ELSE
RETURN 0

ENDIF

See Also:

Stored Procedures & Triggers

6.14 R

6.14.1 RELOAD

Use the RELOAD command to copy an open database without copying any unusable space.

Options

dbspec
Specifies the new database name.

WITH USER CASE
Incorporates case folding and collating tables defined in the user's configuration file into the reloaded
database.

About the RELOAD Command

Oterro 11 Help Manual256

Copyright © 1982-2024 R:BASE Technologies, Inc.

Disk space becomes unavailable in a database when the following actions are performed:

· Deleting rows or indexes.
· Removing tables or columns.
· Adding columns or modifying tables with the ALTER TABLE command.

RELOAD copies a database table by table, and places all rows for each table in a single area on the disk,
which improves database-response time.

When you use RELOAD to reload a database on the same disk and directory as the original database,
enter a different name for the new database. When you reload a database from a different disk or
directory onto the current disk, you can use the same database name for the copy. Be sure to specify
the new drive or directory when you enter the command.

If there is not enough available disk space to copy a database using the RELOAD command, use the
PACK command instead. Back up the database before packing. PACK eliminates unused space in a
database; however, PACK does not rearrange the rows-only the RELOAD command rearranges rows.

RELOAD is available when MULTI is set on and a user has not set any locks on the database.

RELOAD is unavailable when RELOAD is unavailable when is on.

When you reload data that has a NOTE data type, the rows are adjusted according to the current setting
of the SET NOTE_PAD command.

RELOAD is unavailable when STATICDB is set on, which activates a read-only schema mode.

Database Access Rights with RELOAD

When access rights for a table have been assigned using the GRANT command, RELOAD requires the
database owner's user identifier to RELOAD a database.

Example

The following command reloads an open database and gives it the name newbase in the RBASE directory
of drive C:.

RELOAD c:\rbase/newbase

6.14.2 RENAME

Use the RENAME command to change a form, report, label, table, view, or column name, and the
database owner's user identifier. You can also use RENAME to change the name of an existing file.

Options

COLUMN colname1 TO colname2
Renames a column in one table or in all tables in the open database.

R:BASE Database Commands 257

Copyright © 1982-2024 R:BASE Technologies, Inc.

filename
Specifies the new name of the file.

filespec
Specifies the file you want to rename. Optionally, include a drive and path specification in the form D:
\PATHNAME/FILENAME.EXT.

FORM formname1 TO formname2
Renames a form in the open database.

IN tblname
Specifies the table in which you want to rename a column.

LABEL labelname1 TO labelname2
Renames a label in the open database.

NOCHECK
Does not update references to views, tables, and columns in forms, reports, labels, access rights, and
rules.

OWNER ownername1 TO ownername2
Renames an owner in the open database.

PROCEDURE procname1 TO procname2
Renames a Stored Procedure in the open database.

REPORT rptname1 TO rptname2
Renames a report in the open database.

TABLE tblname1 TO tblname2
Renames a table in the open database.

VIEW viewname1 TO viewname2
Renames a view in the open database.

About the RENAME Command

If you do not want R:BASE to update references to views, tables, and columns when you rename them,
include the NOCHECK option with the command.

Renaming Columns
You can rename a column in an entire database or in a single table. R:BASE does not update column
references in rules. When you rename a column, R:BASE automatically updates references to the column
in the following instances:

· If the column has a description.
· If it is used in a form, report, label, computed column, UPDATE access right, or autonumbered

column. However, because of possible size problems, R:BASE does not change column
references inside an expression in a form, report, or label. These column references must be
modified manually through the Form, Report, or Label Designer.

Updating Views and Tables
R:BASE automatically updates references to views and tables in the following instances:

· If you rename a view used in a report, label, or access right.
· If you rename a table that has a description, or is used in a form, report, label, or access right.

R:BASE does not update table or column references in views.

To update a view, delete it with the DROP command and define it again with the CREATE VIEW
command, or QBE. To update a rule, you can use the RULES command, or the Database Designer. If
you use the RULES command, you must first delete the rule with the DROP command and then add it
again with the RULES command.

Renaming Tables

Oterro 11 Help Manual258

Copyright © 1982-2024 R:BASE Technologies, Inc.

When you rename a table that is used as the rule table in a data-entry rule, R:BASE updates the rule
definition. However, if you rename a table used in the WHERE clause of a rule definition, you must update
the rule yourself. R:BASE does not update table references in views.

Renaming Files
When you use RENAME to change the name of a disk file, only the name of the file is changed. The file
remains in the same directory on the same drive. You can include a file specification for the file you are
renaming but not for the new file name. If you want the file to reside in a different drive or directory, use
the COPY command. This command is similar to the operating system command RENAME.

On a workstation with multiple drives (local or mapped), especially when the files are on the different
drive, it is always the best practice to define a drive letter when copying, deleting, renaming or running
files, unless the specified files are located in the working directory. You will not need to specify the drive
letter if all of the files are located in the default directory when using the copy, delete, rename or run
commands.

Updating Command Files
R:BASE also does not update column, table, view, form, report, or label references in command files or
applications. To update command files, use RBEdit or another text editor. To update applications, use the
Application Designer.

Assigning User Identifiers
You can assign or change the database owner's user identifier with RENAME. The default user identifier is
PUBLIC. Until this default is changed, any user can modify the database structure, read, enter, change,
or delete data.

An owner's user identifer can be a maximum of eighteen characters. It must begin with a letter, and can
contain letters, numbers, and the symbols #, $, _, and %, and must be unique among all user identifiers.

Examples

The following command renames a column from transid to transxno in the transmaster table.

RENAME COLUMN transid TO transxno IN transmaster

The following command changes the database owner's user identifier from the default PUBLIC to june.

RENAME OWNER PUBLIC TO june

The following command changes the name of the CUSTOMER file to CUSTOMER.DAT.

RENAME customer customer.dat

The following command renames all four database files to NYC.RX1, NYC.RX2, NYC.RX3, and NYC.RX4.

RENAME newyork.rx? nyc.rx?

6.14.3 RESET

The RESET command adjusts the last modification date/time stamp for tables and views.

When copying table and view information with the UNLOAD command, the output automatically generates
RESET commands after the table/view definition, to reset the date/time stamp and retain the original
value.

R:BASE Database Commands 259

Copyright © 1982-2024 R:BASE Technologies, Inc.

tblview
Specifies a table or view.

value
Specifies the date/time stamp for tables or views.

Examples

The below resets the last modification date and time stamp for the LicenseInformation table.

RESET LicenseInformation LAST_MOD TO '12/15/2022 12:00'

The below resets the last modification date and time stamp for the SalesDataByCompany view.

RESET SalesDataByCompany LAST_MOD TO '01/01/2022 08:00'

6.14.4 REVOKE

Use the REVOKE command to remove privileges provided to users with the GRANT command.

Options

,
Indicates that this part of the command is repeatable.

ALL PRIVILEGES
Removes all user privileges granted for all tables and views or for one table or view.

ALTER
Removes permission from users to modify the structure of all tables or specified tables.

CREATE
Removes permission from users to create new tables. Do not specify any tables or views when removing
this permission.

DELETE
Removes permission to remove rows from all tables and views, or from a specified table or view.

FROM PUBLIC
Specifies PUBLIC. If, for example, Ralph, Sam, Jane, and PUBLIC have been granted certain user
privileges, revoking privileges from PUBLIC would not affect the three listed users.

FROM userlist
Specifies individual users whose access is to be revoked. You must separate user identifiers with a
comma (or the current delimiter). For a value with spaces, the userid must be enclosed in quotes.

FROM userlist, PUBLIC

Oterro 11 Help Manual260

Copyright © 1982-2024 R:BASE Technologies, Inc.

Specifies both individual users and PUBLIC, whose access is to be revoked. You must separate user
identifiers with a comma (or the current delimiter). For a value with spaces, the userid must be enclosed
in quotes.

INSERT
Removes permission to add rows to all tables and views or to a specified table or view.

ON tblview
Specifies a table or view from which to remove user privileges.

REFERENCES
Removes permission to create a table with a foreign key that references a table with a primary key.

SELECT
Removes permission to view and print data from all tables and views, or from a specified table or view.

TEMPORARY
Removes permission from users to create new temporary tables.

UPDATE
Removes permission to change the value of all columns on all tables and views, or on a specified table or
view. You cannot specify columns when revoking UPDATE permission.

About the REVOKE Command

If you are the owner of a database, you can revoke any user privileges granted to users. If the database
owner or other users have assigned you user privileges with the WITH GRANT OPTION, you can revoke
only the user privileges that you have granted to other users.

To remove the WITH GRANT OPTION, you must first revoke the privilege(s) to which the WITH GRANT
OPTION has been assigned.

REVOKE ALL PRIVILEGES revokes all user privileges that have been granted. However, REVOKE
combined with ALTER, CREATE, DELETE, INSERT, REFERENCES, SELECT or UPDATE only applies to those
privileges.

You can remove more than one user privilege in a REVOKE command. Separate the user privileges with
a comma (or the current delimiter).

Examples

Assume that the following sequence of GRANT commands represents all the user privileges granted for
the ConComp database.

GRANT INSERT ON Employee TO Ralph, Sam
GRANT SELECT, INSERT ON TransMaster TO Jane WITH GRANT OPTION
GRANT UPDATE ON TransMaster TO Sam
GRANT UPDATE (Company, CustAddress, CustCity) ON Customer TO Sam, PUBLIC

The following command revokes permission granted to Jane to display or print data, or add rows to the
TransMaster table.

REVOKE SELECT, INSERT ON TransMaster FROM Jane

The following command revokes the UPDATE user privilege granted to Sam for all tables and views in the
database.

REVOKE UPDATE FROM Sam

The following command revokes all user privileges granted to Sam, except those granted to him as a
member of PUBLIC.

REVOKE ALL PRIVILEGES FROM Sam

R:BASE Database Commands 261

Copyright © 1982-2024 R:BASE Technologies, Inc.

The following command revokes all user privileges for all tables and views for the users Sam, Jane, and
Ralph; and the PUBLIC account.

REVOKE ALL PRIVILEGES FROM Sam, Jane, Ralph, PUBLIC

The following command revokes CREATE privileges for temporary tables for the user.

REVOKE TEMPORARY CREATE FROM Noah

6.14.5 RULES

Use the RULES command to regulate data entry in a database.

Options

DELETE

· DELETE SUCCEEDS deletes a row from a database when the conditions in the WHERE clause are
met.

· DELETE FAILS deletes a row from a database when the conditions in the WHERE clause are not
met.

FOR tblname
Specifies the name of the table for which you are defining rules.

FAILS
Specifies that a row must not meet the conditions included in the WHERE clause in order to be added to
the database.

'message'
Specifies a message to be displayed when a rule is violated.

SUCCEEDS
Specifies that a row must meet the conditions included in the WHERE clause in order to be added to the
database.

WHERE clause
Limits rows of data. For more information, see the WHERE command.

6.15 S

6.15.1 SATTACH

Use the SATTACH command to attach a specified table from a foreign database to a connected R:BASE
database.

Oterro 11 Help Manual262

Copyright © 1982-2024 R:BASE Technologies, Inc.

Options

ALIAS AliasList
To specify alias names for columns. The alias list is separated by commas. Only the changed column
names can be specified in the alias list, with other column name to be retained as is left blank.

AS tablealias
Specifies an alias, or temporary name, for the foreign table. A table alias is sometimes required when
attaching foreign data sources that do not follow the same table name restrictions as R:BASE.

tblname
Specifies the table in the foreign database to attach.

TEMPORARY
Allows you to create a temporary name with the SATTACH command. The temporary tables will
disappear when the database is disconnected. NOTE: Any changes made to the temporary table will not
be reflected upon the original SQL data source.

USING ALL
Specifies all columns that uniquely identify the rows in an attached table if no primary or unique keys are
defined. With USING ALL, the QUALCOLS setting is ignored to determine the number of columns to
identify the rows.

When performing a direct UPDATE to the foreign table, the USING ALL approach is the slowest in
processing, which means that to qualify a row for updating, all of the column values must match. Rather,
if a primary key exists, specify the column with USING PrimaryKeyColName instead, as this way, only
the primary key value must match (which is all that should be needed). When updating a row on the
foreign table, R:BASE must count how many rows match that row, and there should only be one
matching row.

USING collist
If the foreign table has no primary or unique key, specify the column(s) that uniquely identify the rows in
the table. The primary key should be specified as the collist value. The collist is not limited to a single
column, but the more columns that are specified, then those column values must also match.

USING ONLY collist
Specifies that only the columns listed will be attached. When using the ONLY option the word "ONLY" must
immediately follow the word "USING". R:BASE will determine the key columns by querying the special
columns of source table, to find primary key or unique key columns. If the query fails, then all columns
will be used.

WHERE clause
Limits rows of data. For more information, see the WHERE Clause.

About the SATTACH Command

Before you can attach a foreign data source table, an R:BASE database must be connected. Also, your
workstation must be connected to the data source.

If you use SATTACH without the tblname option, R:BASE displays the "Attach Table(s)" dialog box with
names of tables in the data source. You can then select a table to attach.

R:BASE Database Commands 263

Copyright © 1982-2024 R:BASE Technologies, Inc.

When attaching external tables by selecting "Utilities" > "Attach SQL Database Tables" from the menu
bar, or using the SATTACH command (without the "USING ALL/collist" keywords), the QUALOCOLS
setting is used to assign what columns uniquely identifies a row. If a primary key or unique key was not
found for the table being SATTACHed, and the USING collist clause was not used to specify what columns
uniquely identifies a row, then R:BASE assigns primary and unique key qualkeys for the attached table.
R:BASE assigns a set of columns to identify the rows starting with the first column of the table. The
number of columns used is limited by the value for QUALCOLS. The (CVAL('QUALKEYS')) function may be
used to capture the columns assigned as a QualKeys for the current database. The (CVAL('QUALKEY
TABLES')) function may be used to capture the tables assigned with QualKey columns.

After you have exited R:BASE or disconnected the database to which the foreign table is attached, you
do not need to reconnect to the table's data source when you open the database again. The data source
is connected when you use the attached table. The data source table remains attached until you detach it
with the SDETACH command, or use the Utilities: Detach SQL Database Table menu option.

When a foreign table is attached, R:BASE writes a table description that identifies the table as a data
source table and names its data source. Use the LIST TABLES tblname command to review table
descriptions.

Notes:

· SATTACH requires an owner password if one has been defined, or permission to create tables.
· When you attach a foreign table, R:BASE only includes the columns with legal names. For example,

R:BASE does not include columns that have spaces in the name, or column names that exceed the
character limit for the R:BASE version installed. Table and column names are limited to 128
characters.

· When you attach a foreign table and select the columns that uniquely identify its rows in the "Select
Column Set" dialog box, do not select columns that have LOB data types, as unpredictable results
might occur.

· When running applications that connect to foreign data sources, you should always disconnect from the
R:BASE database before running the application again.

· When using the keyword "ONLY", to limit the columns attached with a table, the ability to SATTACH
temporary tables and column alias names is supported.

Notes for [Alias] Parameters:

· Syntax has been extended to specify only the changed columns. For example, if you only need to alias
the second column out of four columns you can use ... ALIAS ,,location,,

· Any missing alias names will use the default name.
· If there is a conflicting column name, a warning will be displayed you will be prompted for a new

column name.
· If the name conflicts with another name then you get the error message first explaining the conflict,

then the dialog box.
· If no qualkey is specified, automatic qualkeys will be assigned based on information from the ODBC

source

Examples:

Example 01:
Attaches a foreign data source table using an alias table name

SATTACH CustomerDetails AS tCustomerDetails

Example 02:
Attaches a foreign data source table using an alias table name, and specifies the unique column name for
the source table

SATTACH CustomerDetails AS tCustomerDetails USING CustomerID

Example 03:
Attaches a foreign data source table using alias names for the table and columns, and specifies the
unique column name for the source table

SATTACH Orders AS tOrders USING +

Oterro 11 Help Manual264

Copyright © 1982-2024 R:BASE Technologies, Inc.

OrderID ALIAS +
OrderID, +
CustomerID, +
EmployeeID, +
OrderDate, +
RequiredDate, +
ShippedDate, +
ShipVia, +
tFreight, +
ShipName, +
ShipAddress, +
ShipCity, +
ShipRegion, +
ShipPostalCode, +
ShipCountry

Example 04:
Attaches a foreign data source table using alias names for the table and only the Freight column, and
specifies the unique column name for the source table

SATTACH Orders AS tOrders USING +
OrderID ALIAS ,,,,,,,,tFreight,,,,,,

Example 05:
Attaches a foreign data source table using an alias name for the table which contains spaces, and
specifies only two columns to be included. The table `Order Details` is surrounded by IDQUOTES.

SATTACH `Order Details` AS tOrderDetails USING ONLY +
OrderID, ProductID

Example 06:
Attaches a foreign data source table using an alias name for the table, and specifies a WHERE clause for
limited results

SATTACH Artists AS tArtists WHERE ALastName = 'Ford'

6.15.2 SCONNECT

Use the SCONNECT command to connect R:BASE to a foreign data source.

Options

datasource
Specifies the name of the data source name (DSN) that contains the table to access.

R:BASE Database Commands 265

Copyright © 1982-2024 R:BASE Technologies, Inc.

IDENTIFIED BY userid
Specifies the user account name for the data source. You can use '' (two single quotes) in this position if
there is no User ID.

password
Specifies the password for the data source. You can use '' (two single quotes) in this position if there is
no password.

About the SCONNECT Command
To access an R:BASE database, the R:BASE or Oterro ODBC driver must be installed. The
R:BASE/Oterro ODBC driver version must match the version of the database files that are being
connected.

Omitting the datasource option will display a dialog box, listing data sources from which to choose, and
continues with prompts for a userid and password.

Use the SATTACH command to attach tables to a database. Added data source tables, or SERVER tables,
within an R:BASE database will remain defined as part of the database structure, and will appear in the
Database Explorer table list. To disconnect a DSN connection, use the same syntax with the
SDISCONNECT command.

About the DSN-Less Connection
A data source name (DSN) is a data structure that contains the information about a specific database that
an Open Database Connectivity (ODBC) driver needs in order to connect to it. Included in the DSN,
which resides either in the registry or as a separate text file, is information such as the name, directory
and driver of the database, and, depending on the type of DSN, the ID and password of the user. The
developer creates a separate DSN for each database. To connect to a particular database, the developer
specifies its DSN within a program. In contrast, DSN-less connections require that all the necessary
information be specified within the command. DSN-Less connection requires no server setup, just a
carefully constructed connection string.

There are three kinds of DSN: user DSNs (sometimes called machine DSNs); system DSNs; and file
DSNs. User and system DSNs are specific to a particular computer, and store DSN information in the
registry. A user DSN allows database access for a single user on a single computer, and a system DSN
for any user of a particular computer. A file DSN contains the relevant information within a text file with a
.DSN file extension, and can be shared by users of different computers who have the same drivers
installed.

DSN-less connections demand that you know the name of the file (e.g. file based databases like R:BASE)
or the address of the data server (SQL Server for example).

Armed with appropriate information you could open a data source without a DSN. Normally on the
SCONNECT command you specify the DSN you want to use. ODBC looks up this DSN and determines the
driver to use and what connection it needs. With this method, R:BASE allows the ability to specify the
ODBC driver instead of a DSN.

About the Connection String
The first character in the connection string is a semi-colon. This is the flag which states the string is not
specifying a DSN.

The value after "driver" is the actual name of the driver as defined in the ODBC Data Source
Administrator. Make sure to spell and space the driver name exactly as it is defined in ODBC
Administrator interface under the "Drivers" tab.

The database name and exact path is specified in the "dbq" portion of the string.

The entire string must be surrounded by the database QUOTE character. Single quotes are used in the
examples below.

Examples

Example 01 (Using R:BASE 11 ODBC Driver):

SCONNECT ';driver=R:BASE 11 Database Driver (*.RX1);dbq=d:\SampleData\RRBYW20'

Oterro 11 Help Manual266

Copyright © 1982-2024 R:BASE Technologies, Inc.

Example 02 (Using Oterro 11 ODBC Driver):

SCONNECT ';driver=Oterro 11 Database Driver (*.RX1);dbq=d:\SampleData\RRBYW20'

Example 03 (To use an Access database in "dsnless" mode):
Uses a database called db1.mdb in the "My Documents" folder. The connection can specify additional
items like user id with the "UID=" parameter and a password with the "PWD=" parameter.

SCONNECT ';Driver={Microsoft Access Driver (*.mdb)};DBQ=c:\Documents and
Settings\Administrator\My Documents\db1.mdb;'

Example 04 (To use a SQL Server database):
The server and database are specified along with the uid and pwd.

SCONNECT ';driver={SQL
Server};server=corpseadb0d;uid=my_user_name;pwd=my_pw;database=JohnDoe;'

6.15.3 SDETACH

Use the SDETACH command to remove a foreign data source table from a connected R:BASE database.

Options

,
Indicates that this part of the command is repeatable.

ALL
Specifies all tables.

ALL EXCEPT tblname
Specifies all tables except those specified.

NOCHECK
Eliminates the confirmation message.

tblname
Specifies the table to detach.

For information on how to attach foreign data source tables, see SATTACH.

Examples:

Example 01:
Detaches the tOrderDetails foreign table, without displaying the confirmation dialog

SDETACH tOrderDetails NOCHECK

Example 02:
Detaches all foreign data source tables except ServerFreight and ServerShipping

SDETACH ALL EXCEPT ServerFreight, ServerShipping

R:BASE Database Commands 267

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.4 SDISCONNECT

Use the SDISCONNECT command to disconnect a foreign data source from an R:BASE database.

Options

datasource
Specifies the data source to disconnect.

About the SDISCONNECT Command

If you omit the datasource option, a dialog box opens listing data sources from which to choose.

To disconnect the DSN-less connection, use the exact same data source syntax as the SCONNECT
command, only with SDISCONNECT.

Examples:

Example 01:

SDISCONNECT ';driver=R:BASE 11 Database Driver (*.RX1);dbq=d:\SampleData\RRBYW20'

Example 02:

SDISCONNECT ';driver=Oterro 11 Database Driver (*.RX1);dbq=d:\SampleData\RRBYW20'

Example 03:

SDISCONNECT ';Driver={Microsoft Access Driver (*.mdb)};DBQ=c:\Documents and
Settings\Administrator\My Documents\db1.mdb;'

Example 04:

SDISCONNECT
';driver={SQLServer};server=corpseadb0d;uid=my_user_name;pwd=my_pw;database=JohnDoe;'

See also: DSN-less connections

6.15.5 SELECT

Use the SELECT command to display rows of data from a table or view. To display the data in the order
you want, modify the SELECT command by using various clauses.

The SELECT command is a very powerful data retrieval command. By learning this command, and all of
its parts you can greatly enhance your ability to work with any other R:BASE command that uses those
same portions. For example, learning to use a WHERE clause with SELECT will help you work with WHERE
clauses on other commands.

You can use the SELECT command to do the following:

· Display rows of information from a table or view
· Extract information from a table or view by using a sub-SELECT command (a nested SELECT

statement) in a WHERE command
· Extract information from a table or view by using a SELECT clause in another command

Oterro 11 Help Manual268

Copyright © 1982-2024 R:BASE Technologies, Inc.

A SELECT command is essentially a process of elimination. A SELECT command can contain a number of
clauses (two are required), each of which begins with a keyword, such as FROM or WHERE.

The diagram below shows the different clauses in a SELECT command.

Each of the SELECT clauses has a specific purpose for determining what data you want. The operators
are processed in the order in which they appear in the preceding diagram.

Note:

· Many of the SELECT clauses use the same options, such as expression or colname. These common
options are described only once in "SELECT Command Clause" below.

SELECT Command Clause

The required SELECT command clause specifies which columns to include. You can:

· Select all columns by entering SELECT with an asterisk.
· Name the columns you want to select.
· Use expressions and SELECT functions to perform calculations whose results will also appear as

a column in the final result.
· Select the column or expression values and load them into variables.

Syntax:

Options

*

R:BASE Database Commands 269

Copyright © 1982-2024 R:BASE Technologies, Inc.

Specifies all columns.

,
Indicates that this part of the command is repeatable.

ALL
Specifies all rows returned by the other clauses.

#c
Specifies a column, where #c is the column number shown in the output of the LIST TABLES command.
You can enter a table or correlation name before the #c.

colname
Specifies a column name. In a command, you can enter #c, where #c is the column number shown when
the columns are listed with the LIST TABLES command. In an SQL command, a column name can be
preceded by a table or correlation name and a period (tblname.colname). You can enter tblname.* to
specify all columns in the table.

corr_name
Correlation name. A nickname or alias for a table or view name. Use corr_name to refer to the same
table twice within the command, or to explicitly specify a column in more than one table. The correlation
name must be at least two characters.

dbname
Currently connected database name, plus the drive and directory if the database is not on the current
directory. It has the form D:\PATHNAME/DBNAME where D: is the optional drive letter, /PATHNAME is the
optional directory path, and /DBNAME is the database name.

DISTINCT
Eliminates duplicate rows from the resulting data set.

(expression)
Determines a value using a text or arithmetic formula. The expression can include other columns from
the table, constant values, functions, or system variables such as #date, #time, and #pi.

FROM
Lists the tables from which data is to be displayed.

ind_var
Specifies a variable result indicator to be used with an INTO clause in a SELECT command. This variable
stores the status of the variable: non-null (0) or null (-1).

INDICATOR
Indicates the following variable is an indicator variable, which is used to indicate if a null value is
retrieved.

INTO
Selects information directly from a table and puts it into variables. You must include a WHERE clause so
the SELECT command finds only one row.

into_var
Specifies a variable whose value is assigned with an INTO clause in a SELECT command.

ORDER BY clause
Sorts rows of data. See ORDER BY.

=S
Calculates the sum of a column that has CURRENCY, DOUBLE, INTEGER, NUMERIC, or REAL data type
values, or the results of an expression using CURRENCY, DOUBLE, INTEGER, NUMERIC, or REAL data
type values.

tblview
Specifies a table or view name.

USER

Oterro 11 Help Manual270

Copyright © 1982-2024 R:BASE Technologies, Inc.

Retrieves the current user as a constant.

=w
Specifies a display width.

WHERE clause
Limits rows of data. See "WHERE.

Examples

The following command selects the company name and ID for companies in Washington state:

SELECT custid, company FROM customer +
WHERE custstate = 'WA' ORDER BY company

custid company

122 Data Solutions
119 Datacrafters Infosystems
130 MIS by Design
114 Softech Database Design

6.15.5.1 SELECT Functions

This clause, determines which columns to include.

Options

*
Specifies all rows.

AVG
Computes the numeric average. R:BASE rounds averages of INTEGER values to the nearest integer
value and CURRENCY values to their nearest unit.

COUNT
Determines how many non-null entries there are for a particular column item.

DISTINCT
Eliminates duplicate rows from the calculation. The DISTINCT keyword is only needed to be specified for
the first column in order to be applied to all columns in a query.

LISTOF
Creates a text string of the values separated by the current comma delimiter character. The text string is
limited to 10,000 characters. As LISTOF is an aggregate-style function, any sorting (ORDER BY) needed
for the listed results must be performed at a lower level, in which a view may be created to perform the
sorting first.

R:BASE Database Commands 271

Copyright © 1982-2024 R:BASE Technologies, Inc.

The LISTOF function can be used with the "SELECT ... INTO ..." to populate a variable with a list of values
which can then be used in a CHOOSE command with the #LIST option. It can also be used in Forms,
Reports or Labels to look up values from multiple rows.

MAX
Selects the maximum numeric, time, date, or alphabetic value in a column.

MIN
Selects the minimum numeric, time, date, or alphabetic value in a column.

PSTDEV
Calculates population standard deviation.

PVARIANCE
Determines population variance.

SUM
Computes the numeric sum.

About SELECT Functions

A SELECT function can be used to provide summary data about a group of rows in a table or for all rows
in a table. These functions may only be used with the GROUP BY clause or when only SELECT functions
are specified.

Using MIN and MAX functions for NOTE data type

Selecting aggregate functions, such as MIN and MAX, requires that R:BASE keeps an accumulator and
choose to only use the first 80 characters for NOTE values. This matches the fact that if you sort on NOTE
fields, the sort will be based on the first 80 characters only.

Examples

The COUNT function works in two different ways, depending on its argument. COUNT(*) counts all rows
in a table, but (OUNT(colname) counts only rows in which the value in the specified column is not null. For
example:

SELECT emptitle, COUNT(*), COUNT(emptitle) +
FROM employee GROUP BY emptitle

The final result contains both forms of the COUNT function.

emptitle COUNT(*) COUNT(emptitle)

Manager 2 2

Representative 3 3

Sales Clerk 1 1

-0- 2 0

If you wanted to compute the difference between each employee's average sales and the average sales
for all employees, you would first use a SELECT function to calculate the average for all employees and
store the result in a variable. For more information, see INTO.

The following command assigns the value $71,571.88 to the vaverage variable.

SELECT AVG(netamount) INTO vaverage FROM transmaster

Next, you can use the variable and another SELECT function in an expression to calculate the difference
for each employee, and display the average net amount for each employee.

SELECT empid, AVG(netamount), +
 (.vaverage - (AVG(netamount)))=30 +

Oterro 11 Help Manual272

Copyright © 1982-2024 R:BASE Technologies, Inc.

 FROM transmaster GROUP BY empid

empid AVG (netamount) (.vaverage - AVG(netamount))

102 $64,510.00 $7,061.88
129 $69,555.00 $2,016.88
131 $118,000.00 -$46,428.12
133 $44,380.00 $27,191.88
160 $114,850.00 -$43,278.12
165 $14,685.00 $56,886.88
167 $3,830.00 $67,741.88

Examples Using the LISTOF Function

SELECT (LISTOF(ColumnName)) INTO VariableName INDICATOR IndVar +
FROM TableView WHERE ...

In a Form, Report or Label Expression:

VariableName = (LISTOF(ColumnName)) IN LookUpTableView WHERE +
KeyColumn = KeyColumn

Example 01:

SET VAR vValueList TEXT = NULL
SELECT (LISTOF(ColumnName)) INTO vValueList INDIC IvValueList +
FROM TableName WHERE ...

The variable vValueList will be a text string of the values separated by the current comma delimiter
character.

If you would like to add a single space after each value, then:

SET VAR vValueList TEXT = NULL
SELECT (SRPL(LISTOF(ColumnName),',',', ',0)) INTO +
vValueList INDIC IvValueList FROM TableName WHERE ...

Notice the additional space after comma in ReplaceString.

If you would like to use a carriage return after each value, then:

SET VAR vValueList TEXT = NULL
SELECT (SRPL(LISTOF(ColumnName),',',(CHAR(10)),0)) INTO +
vValueList INDIC IvValueList FROM TableName WHERE ...

Example 02:

CONNECT Concomp IDENTIFIED BY NONE
SET CAPTION ' '
SET AUTODROP OFF
SET RBGSIZE CENTER CENTER 800 600
SET VAR vLines INTEGER = 0
SET VAR vValueList TEXT = NULL
SET VAR vLastName TEXT = NULL
SET VAR vTitle TEXT = 'List Created Using LISTOF Function'
SET VAR vCaption TEXT = 'Using #LIST Options in CHOOSE Command!'
CLS
PAUSE 3 USING 'Collecting Values ...' CAPTION .vCaption AT 16 30
SELECT (COUNT(*)), (LISTOF(EmpLName)) INTO +

R:BASE Database Commands 273

Copyright © 1982-2024 R:BASE Technologies, Inc.

vLines INDIC IvLines, vValueList INDIC IvValueList FROM Employee
IF vLines > 18 THEN
 SET VAR vLines = 18
ENDIF
CLS
CHOOSE vLastname FROM #LIST .vValueList AT 6 30 +
TITLE .vTitle CAPTION .vCaption LINES .vLines FORMATTED
IF vLastName IS NULL OR vLastName = '[Esc]' THEN
 GOTO Done
ELSE
 CLEAR ALL VAR EXCEPT vLastName
ENDIF
-- Do what you have to do here ...
LABEL Done
CLS
CLEAR ALL VAR
QUIT TO MainMenu.RMD
RETURN

Example 03:

If you would like to retrieve the list of DISTINCT values, then:

SET VAR vValueList TEXT = NULL
SELECT (LISTOF(DISTINCT ColumnName)) INTO +
vValueList INDIC IvValueList FROM TableName WHERE ...

6.15.5.2 TOP

This parameter includes the support to specify the TOP n qualifier for the SELECT command. The TOP n
will retrieve the top number of records from the table.

The "TOP n" goes between the word SELECT and the column list for the command.

n
Specifies the number of records to retrieve

collist
Specifies a list of one or more column names, separated by a comma (or the current delimiter)

Example:

To show the top 5 bonuses where the bonus is under $500 from the SalesBonus table in the ConComp:

SELECT TOP 5 EmpID,Bonus FROM SalesBonus WHERE Bonus < 500 ORDER BY Bonus=DESC

 EmpID Bonus
 ---------- ---------------
 131 $456.75
 131 $326.25
 102 $175.00
 131 $157.50
 129 $153.60

Oterro 11 Help Manual274

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.5.3 INNER JOIN

This clause is used to retrieve data from two or more tables.

Options

.column1
Defines the column on which to link.

.column2
Defines the column on which to link.

corr_name
A correlation name is an alias or nickname for a table. It lets you refer to the same table twice in one
command, use a shorter name, and explicitly refer to a column when referring to the same column if that
column appears in more than one table. The correlation name must be at least two characters.

FROM lefttblview
Specifies the left table or view.

lefttblview
Explicitly defines the column on which to link the left table name or view.

INNER JOIN righttblview
Specifies the right table or view.

righttblview
Explicitly defines the column on which to link the right table name or view.

WHERE clause
Limits rows of data. See WHERE.

About JOIN

When you perform a SQL JOIN, you specify one column from each table to join on. These two columns
contain data that is shared across both tables. You can use multiple joins in the same SQL statement to
query data from as many tables as you like.

JOIN Types

Depending on your requirements, you can do an "INNER" join or an "OUTER" join. The differences are:

· INNER JOIN: This will only return rows when there is at least one row in both tables that match the
join condition.

· LEFT OUTER JOIN: This will return rows that have data in the left table (left of the JOIN keyword),
even if there's no matching rows in the right table.

· RIGHT OUTER JOIN: This will return rows that have data in the right table (right of the JOIN
keyword), even if there's no matching rows in the left table.

R:BASE Database Commands 275

Copyright © 1982-2024 R:BASE Technologies, Inc.

· FULL OUTER JOIN: This will return all rows, as long as there's matching data in one of the tables.

Nested JOINs

Any of the JOIN types can be mixed in any sequence to create a nested join. The nested joins still
require that you specify one column from each table to join on. When nesting joins, it is important to use
the correct sequence of parenthesis, along with a correlation for each join.

In the example below, notice the two sets of parenthesis, which all begin after the FROM keyword and
end after the linking columns. Also note the "J1" and "J2" correlations specified for each join.

SELECT ALL FROM ((TABLE1 t1 +
INNER JOIN TABLE2 t2 ON t1.FieldT2=t2.FieldT2) J1 +
INNER JOIN TABLE3 t3 ON t3.FieldT3=j1.FieldT3) J2

Examples

INNER JOIN Example:

The following example list an employee's total sales for each day.

SELECT t1.empid, t2.netamount, t2.transdate FROM employee t1 +
INNER JOIN transmaster t2 ON t1.empid = t2.empid +
WHERE empid = 129

 t1.empid t2.netamount t2.TransDate

 ---------- --------------- ------------
 129 $3,080.00 07/02/2003
 129 $5,385.00 07/08/2003
 129 $6,160.00 07/11/2003
 129 $5,575.00 08/24/2003
 129 $10,445.00 08/24/2003
 129 $10,175.00 08/25/2003
 129 $2,195.00 08/27/2003

Nested INNER JOIN Example:

The following example lists a specific product, all of the locations where it resides, and the components
used within the product.

SELECT ProdName, Location, CompID FROM +
((Product t1 INNER JOIN ProdLocation t2 ON t1.Model=t2.Model) J1 +
 INNER JOIN CompUsed t3 ON t3.Model=j1.Model) J2 +
WHERE Model = 'CX3000'

 ProdName Location CompID

 ----------------------------------- -------- --------
 Standard SVGA Color PC A-1 X1010
 Standard SVGA Color PC A-1 X2000
 Standard SVGA Color PC A-1 X3000
 Standard SVGA Color PC B-1 X1010
 Standard SVGA Color PC B-1 X2000
 Standard SVGA Color PC B-1 X3000
 Standard SVGA Color PC C-10 X1010
 Standard SVGA Color PC C-10 X2000
 Standard SVGA Color PC C-10 X3000

Oterro 11 Help Manual276

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.5.4 INTO

If the result consists of one row, this clause loads the data into one or more variables, one for each
column value in the result.

Options

ind_var
Stores an INTEGER value (-1 or 0) that indicates whether the preceding into_var received a null value or
a non-null value; this is an optional indicator variable. If you omit indicator variables, R:BASE displays a
message and assigns a negative integer to SQLCODE if it encounters a null value. The command
continues to process rows.

INDICATOR
Indicates the following variable is an indicator variable, which is used to indicate if a null value is
retrieved.

into_var
Assigns the result associated with a column, expression, or function named in the command clause to the
corresponding variable named in the INTO clause. The number of items or variables named in the
command and INTO clauses, as well as their data types, must be the same.

About the SELECT INTO command

This optional clause loads the results of a SELECT command into variables, but does not display the
results on screen.

An INTO clause loads the resulting value of each column, expression, or function included in the
command clause into a variable. If previous clauses have returned more than one row, the values
assigned to the variables are unpredictable. You should make sure you are returning only one row. Either
test the results before using an INTO clause or check the value of the variable sqlcode after executing
the command. If the clause is successful, sqlcode is 0.

Comments

The INTO clause must have a corresponding variable for every item in the command clause; values are
assigned to variables in the order of items in the command clause. The data type of each command
clause item and its corresponding into_var must be compatible. For example:

SELECT MAX(listprice), MIN(listprice) +
 INTO vmaxprice INDICATOR vind_max, +

 vminprice INDICATOR vind_min +

 FROM product

The MAX and MIN functions assign the value $3,100.00 to the variable vmaxprice and $1,900.00 to
vminprice. These values are the maximum and minimum values for the listprice column in the product
table. Since both functions returned values, the value of both indicator variables is 0. Also, since only
SELECT functions are specified, a GROUP BY clause is not required.

If you select and load a value into an undefined numeric variable, that variable acquires the precision
and scale of the column from which the value is selected.

R:BASE Database Commands 277

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.5.5 FROM

Starting with all the tables, views, rows, and columns in the database, this clause specifies one or more
tables or views from which you want data.

Options

,
Indicates that this part of the command is repeatable.

corr_name
A correlation name is an alias or nickname for a table. It lets you refer to the same table twice in one
command, use a shorter name, and explicitly refer to a column when referring to the same column if that
column appears in more than one table. The correlation name must be at least two characters.

tblview
A table or view containing one or more columns named in the command clause.

About the FROM Clause

The FROM clause names one or more tables and/or views from which the information is used in a SELECT
command or other command. It is one of the two REQUIRED portions of a SELECT statement. The other
required portion being the column listing. Some other commands that may use a FROM clause include
TALLY, COMPUTE and CHOOSE.

Examples

The following command selects all columns from the transmaster table in the R:BASE sample database,
concomp.

SELECT * FROM transmaster

The result of this command appears in the following table. The transid column is the primary key for this
table; that is, transid contains a unique value for each row in the table. Columns that are not primary
keys can have the same value in more than one row. The result shown here is used in the discussions of
other SELECT clauses later in this section.

transid custid empid transdate netamount freight

4760 100 133 01/02/94 $32,400.00 $324.00
4780 105 160 01/08/94 $9,500.00 $95.00
4790 104 129 01/09/94 $6,400.00 $64.00
4795 101 102 01/11/94 $176,000.00 $1,760.00
4800 105 160 02/22/94 $194,750.00 $1,947.50
4865 102 129 02/22/94 $34,125.00 $341.25
4970 103 131 02/23/94 $152,250.00 $1,522.50
4975 101 102 02/26/94 $87,500.00 $875.00
4980 101 102 02/27/94 $22,500.00 $225.00
5000 101 102 02/28/94 $40,500.00 $405.00
5010 107 131 03/02/94 $108,750.00 $1,087.50
5015 103 131 03/05/94 $80,500.00 $805.00
5050 104 129 03/06/94 $56,250.00 $562.50
5060 101 102 03/07/94 $57,500.00 $575.00
5065 106 160 03/13/94 $140,300.00 $1,403.00
5070 104 129 03/14/94 $95,500.00 $955.00

Oterro 11 Help Manual278

Copyright © 1982-2024 R:BASE Technologies, Inc.

5075 102 129 03/15/94 $155,500.00 $1,555.00
5080 100 133 03/19/94 $88,000.00 $880.00
5085 107 131 03/18/94 $130,500.00 $1,305.00
5045 100 102 09/26/94 $3,060.00 $30.60
5046 101 165 09/27/94 $3,060.00 $30.60
5047 102 167 09/27/94 $3,830.00 $38.30
5048 103 133 -0- $12,740.00 $127.40
5049 102 165 04/21/94 $26,310.00 $263.10

When a column appears in more than one table, enter the table name and a period preceding each
column name to specify the column you want. For example:

SELECT transmaster.transid, transmaster.netamount,+
transdetail.model FROM transmaster, transdetail +
WHERE transmaster.transid = transdetail.transid

Or, you can assign a correlation name to a table. The following command is equivalent to the previous
example:

SELECT t1.transid, t1.netamount, t2.model +
FROM transmaster t1, transdetail t2 +
WHERE t1.transid = t2.transid

In this SELECT command, the FROM clause assigns correlation names to the transmaster and transdetail
tables. Because the transid column appears in both tables, the correlation names, t1 and t2, clarify which
table each column is from.

Because R:BASE processes the FROM clause first, you must use correlation names, if you have assigned
them, throughout the SELECT command.

6.15.5.6 EXCEPT

The EXCEPT clause allows for specified columns to be excluded from a SELECT query.

The EXCEPT clause is another clause you can have in a SELECT command like WHERE and ORDER BY.

SELECT ... EXCEPT selects data from all records in the table, except for columns in exclusion list. When
using SELECT ... EXCEPT there can only be one table in the FROM clause.

The EXCEPT clause is helpful with tables which have many columns, to exclude columns from the result
set, where the syntax This saves time to type the long list of column names in a SELECT statement.

Examples

The below selects all columns from the Customer table, except CustURL and CustEMail

SELECT ALL FROM Customer EXCEPT CustURL, CustEMail

The below selects all columns from the Employee table where the sales bonus are greater than $200.00

SELECT ALL FROM Employee EXCEPT HireDate, EntryDate WHERE EmpID IN (SELECT EmpID FROM
SalesBonus WHERE Bonus > 200.00)

R:BASE Database Commands 279

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.5.7 LIMIT

This parameter includes the support to LIMIT the SELECT results.

The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement. LIMIT
takes one or two numeric arguments, which must be integer.

With two arguments, the first argument specifies the offset of the first row to return, and the second
specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM table LIMIT 5,10
Retrieves rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large number
for the second parameter. This statement retrieves all rows from the 96th row to the last:

SELECT * FROM table LIMIT 95,99999999

With one argument, the value specifies the number of rows to return from the beginning of the result set:

SELECT * FROM table LIMIT 5
Retrieve first 5 rows

In other words, LIMIT n is equivalent to LIMIT 0,n.

Examples:

SELECT * FROM tablename LIMIT 0,30
Gets rows 1-30 from a table

SELECT * FROM tablename LIMIT 5,10
Gets rows 6-15 from a table

SELECT * FROM tablename LIMIT 10
Gets the first 10 rows from a table

6.15.5.8 OUTER JOIN

This clause is used to retrieve data from two or more tables.

Options

Oterro 11 Help Manual280

Copyright © 1982-2024 R:BASE Technologies, Inc.

.column1
Defines the column on which to link.

.column2
Defines the column on which to link.

corr_name
A correlation name is an alias or nickname for a table. It lets you refer to the same table twice in one
command, use a shorter name, and explicitly refer to a column when referring to the same column if that
column appears in more than one table. The correlation name must be at least two characters.

FROM lefttblview
Specifies the left table or view.

LEFT
RIGHT
FULL
Specifies the type of outer join.

lefttblview
Explicitly defines the column on which to link the left table name or view.

OUTER JOIN righttblview
Specifies the right table or view.

righttblview
Explicitly defines the column on which to link the right table name or view.

WHERE clause
Limits rows of data. See WHERE.

About JOIN

When you perform a SQL JOIN, you specify one column from each table to join on. These two columns
contain data that is shared across both tables. You can use multiple joins in the same SQL statement to
query data from as many tables as you like.

JOIN Types

Depending on your requirements, you can do an "INNER" join or an "OUTER" join. The differences are:

· INNER JOIN: This will only return rows when there is at least one row in both tables that match the
join condition.

· LEFT OUTER JOIN: This will return rows that have data in the left table (left of the JOIN keyword),
even if there's no matching rows in the right table.

· RIGHT OUTER JOIN: This will return rows that have data in the right table (right of the JOIN
keyword), even if there's no matching rows in the left table.

· FULL OUTER JOIN: This will return all rows, as long as there's matching data in one of the tables.

About OUTER JOIN

When you use an outer join, rows are not required to have matching values. The table order in the FROM
clause specifies the left and right table. You can include a WHERE clause and other SELECT clause options
such as GROUP BY. The result set is built from the following criteria:

· In all types of outer joins, if the same values for the linking columns are found in each table,
R:BASE joins the two rows.

· For a left outer join, R:BASE uses each value unique to the left (first) table and completes it with
nulls for the columns of the right (second) table when the linking columns do not match.

· A right outer join uses unique values found in the right (second) table and completes the rows
with nulls for columns of the left (first) table when the linking columns do not match.

· A full outer join first joins the linking values, followed by a left and right outer join.

R:BASE Database Commands 281

Copyright © 1982-2024 R:BASE Technologies, Inc.

Nested JOINs

Any of the JOIN types can be mixed in any sequence to create a nested join. The nested joins still
require that you specify one column from each table to join on. When nesting joins, it is important to use
the correct sequence of parenthesis, along with a correlation for each join.

In the example below, notice the two sets of parenthesis, which all begin after the FROM keyword and
end after the linking columns. Also note the "J1" and "J2" correlations specified for each join.

SELECT ALL FROM ((TABLE1 t1 +
LEFT OUTER JOIN TABLE2 t2 ON t1.FieldT2=t2.FieldT2) J1 +
RIGHT OUTER JOIN TABLE3 t3 ON t3.FieldT3=j1.FieldT3) J2

Examples

The following example lists all of the employees and their total sales, including those employees who
have not yet completed a sale.

SELECT t1.empid, SUM(t2.netamount) FROM employee t1 +
FULL OUTER JOIN transmaster t2 ON t1.empid = t2.empid +
GROUP BY t1.empid

t1.empid SUM(t2.netamount)

102 $387,060.00
129 $347,775.00
131 $472,000.00
133 $133,140.00
160 $344,550.00
165 $29,370.00
166 $0.00
167 $3,830.00

Nested INNER JOIN Example:

The following example lists a specific product, all of the locations where it resides, and the components
used within the product.

SELECT ProdName, Location, CompID FROM +
((Product t1 RIGHT OUTER JOIN ProdLocation t2 ON t1.Model=t2.Model) J1 +
 RIGHT OUTER JOIN CompUsed t3 ON t3.Model=j1.Model) J2 +
WHERE Model = 'CX3000'

 ProdName Location CompID

 ----------------------------------- -------- --------
 Standard SVGA Color PC A-1 X1010
 Standard SVGA Color PC B-1 X1010
 Standard SVGA Color PC C-10 X1010
 Standard SVGA Color PC A-1 X2000
 Standard SVGA Color PC B-1 X2000
 Standard SVGA Color PC C-10 X2000
 Standard SVGA Color PC A-1 X3000
 Standard SVGA Color PC B-1 X3000
 Standard SVGA Color PC C-10 X3000

Oterro 11 Help Manual282

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.5.9 WHERE

This clause determines which rows of data to include.

Options

AND
Indicates the following condition must be met along with the preceding condition.

condition
Identifies requirements to be in the WHERE syntax.

NOT
Reverses the meaning of a connecting operator. AND NOT, for example, indicates that the first condition
must be met and the following condition must not be met.

OR
Indicates the following condition can be met instead of the preceding condition.

About the WHERE Clause

In most commands, a WHERE clause follows the syntax diagram above.

The two main elements in any WHERE clause are conditions and connecting operators.

We now support "COUNT = LAST" in two different ways. If the entire WHERE clause is "WHERE COUNT =
LAST" then R:BASE works like it always has to quickly fetch the last row of the table. The NEW
functionality is to have other conditions in the WHERE clause and you want the last row of whatever
qualifies.

To make it work this way specify the other conditions and then add "AND COUNT = LAST".

Here is an example:

SELECT * FROM Customer WHERE CustID > 100 AND COUNT = LAST

WHERE Clause Conditions

The following syntax diagram and table show the basic formats for WHERE clause conditions, which can
be used alone or together.

R:BASE Database Commands 283

Copyright © 1982-2024 R:BASE Technologies, Inc.

Basic WHERE Clause Conditions

Condition Syntax Description

colname op DEFAULT True if a column value compares correctly with the DEFAULT
value for the column. Op can be =, <>, >=, >, <=, or <.

colname = USER True if a column value equals the current user identifier.

item1 IS NULL True if item1 has a null value. Item1 can be a column name,
value, or expression. A null value cannot be used in a
comparison with an operator.

item1 op item2 True if the relationship between two items is true as defined by
an operator. Item1 can be a column name, value, or
expression; item2 can be a column name, value, expression, or
sub-SELECT statement.

Oterro 11 Help Manual284

Copyright © 1982-2024 R:BASE Technologies, Inc.

COUNT=INSERT Refers to the last row inserted in a table by the current user,
even if it has been modified by another user. The
COUNT=INSERT condition can be used with a single-table view,
but not with a multi-table view. If there is not a newly inserted
row in the table, then COUNT=INSERT performs the same action
as COUNT=LAST, and fetches the current end row of the table.

COUNT=LAST Refers to the last row in a table. The COUNT=LAST condition can
be used with a single-table view, but not with a multi-table view.

COUNT op value Refers to a number of rows defined by op and value.

LIMIT=value Specifies a number of rows affected by a command. A LIMIT
condition should be the last condition in a WHERE clause.

EXISTS (sub-SELECT statement) True if sub-SELECT statement returns one or more rows.

item1 BETWEEN item2 AND item3 True if the value of item1 is greater than or equal to the value of
item2, and if the value of item1 is less than or equal to the value
of item3.

colname LIKE 'string ' True if a column value equals the text string. With LIKE, a string
can also be a DATE, TIME, or DATETIME value. The text string
can contain R:BASE wildcard characters.

colname LIKE 'string ' ESCAPE 'chr ' True if a column value equals a text string. If you want to use a
wildcard character as a text character in the string, specify the
ESCAPE character 1chr. In the string, use chr in front of the
wildcard character.

colname CONTAINS 'string ' True if a column value contains the text string.

colname SOUNDS 'string ' True if the soundex value of a column matches the soundex
value of the text string.

item1 IN (vallist) True if item1 is in the value list.

item1 IN (sub-SELECT statement) True if item1 is in the rows selected by a sub-SELECT.

item1 op ALL (sub-SELECT
statement)

True if the relationship between item1 and every row returned
by a sub-SELECT statement matches an operator.

item1 op ANY(sub-SELECT statement)True if the relationship between item1 and at least one value
returned by a sub-SELECT statement matches an operator.

item1 op SOME (sub-SELECT
statement)

ANY and SOME are equivalent.

Notes:

· Placing NOT before most text operators (such as NULL or BETWEEN) reverses their meaning.

· When a SELECT statement is part of a WHERE clause, it is called a sub-SELECT clause. A sub-SELECT
clause can contain only one column name (not a column list or *), expression, or function. The INTO
and ORDER BY clauses in a sub-SELECT are ignored.

You can only use the current wildcard characters to compare a column to a text value when using the
LIKE comparison. The default wildcard characters are the percent sign (%), which is used for one or
more characters, and the underscore (_), which is used for a single character.

If you compare a column with a value, you can either enter the value or specify a global variable. If you
specify a variable, R:BASE compares the column with the current value of the variable.

To significantly reduce processing time for a WHERE clause, use INDEX processing. To use indexes, the
following conditions must be met:

· A condition in the WHERE clause compares an indexed column.
· If the WHERE clause contains more than one condition, R:BASE selects the condition that places

the greatest restriction on the WHERE clause.
· Conditions are not joined by the OR operator.
· The comparison value is not an expression.

Connecting Operators

When you use more than one condition in a WHERE clause, the conditions are connected using the
connecting operators AND, OR, AND NOT, and OR NOT.

R:BASE Database Commands 285

Copyright © 1982-2024 R:BASE Technologies, Inc.

The connecting operator AND requires that both conditions it separates must be satisfied. The connecting
operator OR requires that either condition it separates must be satisfied.

The connecting operator AND NOT requires that the preceding condition must be satisfied, and the
following condition must not be satisfied. The connecting operator OR NOT requires that either the
preceding condition must be satisfied, or any condition except the following condition must be satisfied.

In WHERE clauses with multiple conditions, conditions that are connected by AND or AND NOT are
evaluated before those connected by OR or OR NOT. However, you can control the order in which
conditions are evaluated by either placing parentheses around conditions or using the SET AND
command. If you set AND off, conditions are always evaluated from left to right.

Examples

The following WHERE clause chooses sales amounts that are less than the value of a variable containing
the daily average.

... WHERE amount < .dailyave

The following WHERE clause specifies the seventh row.

... WHERE COUNT = 7

The following WHERE clause specifies each row from the employeetable that contains both the first name
June and the last name Wilson.

SELECT * FROM employee WHERE empfname = 'june' AND emplname = 'wilson'

The following WHERE clause selects dates in the actdate column that are greater than dates in the
begdate column or are less than dates in the enddate column.

... WHERE actdate BETWEEN begdate AND enddate

The next three WHERE clauses use the following data:

empfname emplname
-------- --------
 Mary Jones
 John Smith
 Agnes Smith
 John Brown

In both of the following clauses, R:BASE first evaluates the conditions connected by AND, selecting John
Smith. Then R:BASE adds any Marys to the list because the connecting operator is OR. The final result
includes John Smith and Mary Jones.

...WHERE empfname = 'Mary' OR empfname = 'John' +
 AND emplname = 'Smith'

...WHERE empfname = 'Mary' OR (empfname = 'John' +
 AND emplname = 'Smith')

By moving the parentheses around the conditions connected by OR, you can select only John Smith. In
the following WHERE clause, the first name can be either Mary or John, but the last name must be Smith.

...WHERE (empfname = 'Mary' OR empfname = 'John') AND +
 emplname = 'Smith'

The following example illustrates a sub-SELECT in a WHERE clause. Assume you wanted a list of all sales
representatives that had transactions greater than $100,000, and the information for such a list was
contained in two tables, employee and transmaster. The relevant columns in these tables are:

Oterro 11 Help Manual286

Copyright © 1982-2024 R:BASE Technologies, Inc.

employee transmaster
empid emplname empid netamount
----- --------- ----- ------------
 102 Wilson 133 $32,400.00
 129 Hernandez 160 $9,500.00
 133 Coffin 129 $6,400.00
 165 Williams 102 $176,000.00
 166 Chou 160 $194,750.00
 167 Watson 129 $34,125.00
 160 Smith 131 $152,250.00
 131 Simpson 102 $87,500.00
 102 $22,500.00
 102 $40,500.00
131 $108,750.00

 131 $80,500.00
 129 $56,250.00
 102 $57,500.00
 160 $140,300.00
 129 $95,500.00
 129 $155,500.00
 133 $88,000.00
 131 $130,500.00
 102 $3,060.00
 165 $3,060.00
 167 $3,830.00
 133 $12,740.00
 165 $26,310.00

To display a list of employees in the transmaster table with a transaction larger than $100,000, enter the
following command:

SELECT empid, emplname FROM employee WHERE empid IN +
 (SELECT empid FROM transmaster WHERE netamount > 100000)

R:BASE displays the following list:

 empid emplname
--------- ----------------
 102 Wilson
 129 Hernandez
 131 Simpson
 160 Smith

Note: You can use a sub-SELECT in any command that allows a full WHERE clause.

R:BASE Database Commands 287

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.5.10 Sub-SELECT

This clause works in conjunction with the WHERE clause to determine which rows of data to include.

Options

For a description of the options, see SELECT.

About the Sub-SELECT Clause

A sub-SELECT command, which is a SELECT command nested within another command, always appears
in a WHERE clause, whether the sub-SELECT command is nested in the WHERE clause of a SELECT
command or in another command such as EDIT USING form. R:BASE processes the clauses in a sub-
SELECT in the same order as in a SELECT command.

Example

The following example selects customers that have purchased items in the month of January.

SELECT company FROM customer WHERE custid +
 IN (SELECT custid FROM transmaster +
 WHERE (IMON(transdate)=1))

company

PC Distribution Inc.
Computer Distributors Inc.
Industrial Concepts Inc.
PC Consultation and Design

6.15.5.11 AS

This clause dynamically renames columns in a SELECT clause.

Oterro 11 Help Manual288

Copyright © 1982-2024 R:BASE Technologies, Inc.

Options

,
Indicates that this part of the command is repeatable.

colname
Specifies a column name. The column name is limited to 128 characters.

(expression)
Determines a value using a text or arithmetic formula. The expression can include other columns from
the table, constant values, functions, or system variables such as #date, #time, and #pi.

AS alias
Determines the alias of the column. This may be used to refer to the column in other locations.

FROM tableview
Specifies the table or view to draw information from.

About the SELECT AS command

The SELECT AS command functions exactly like any other SELECT command and will accept all other
SELECT options. The one noticeable exception is that this allows you to give a column an alias. This can
be most useful when used in conjunction with the CREATE VIEW command.

Examples

The following 3 examples are based on the ConComp database.

The following command selects the EmpID and the EmpName columns from the Employee table and
renames them to "EmployeeID" and "Name".

SELECT EmpID AS EmployeeID,EmpName AS Name FROM Employee

The following command creates a VIEW using the SELECT AS notation. This view contains a column for
Employee ID, Employee Name (which is a single column based on the EmpFName and EmpLName
columns) from the Employee table and the Transdate and NetAmount columns from the Transmaster
table. The immediately following command browses the Employee Name, Transdate and Netamount
column. For more on Views please see CREATE VIEW.

CREATE VIEW EmpAmount AS SELECT T1.EmpID, +
 (T1.EmpFName + ' ' + T1.EmpLName) AS EmpName, +
 T2.TransDate,T2.NetAmount FROM Employee T1, +
 TransMaster T2 WHERE T1.EmpID = T2.EmpID

BROWSE EmpName,TransDate,NetAmount FROM EmpAmount

This final example uses IDQuotes to create a column name with spaces in it and then uses the SELECT
HTML option to turn that into an HTML table with the column name. The OUTPUT commands redirect
output to a file called "Emp.HTM" and then back to the screen. We do NOT recommend using this method
to create VIEWS or TABLES with names that contain spaces as this could lead to Database Corruption.

OUTPUT EMP.HTM
SELECT EmpID as `Employee ID` FROM Employee HTML
OUTPUT SCREEN

R:BASE Database Commands 289

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.5.12 GROUP BY

This clause determines which rows of data to include.

Options

,
Indicates that this part of the command is repeatable.

ASC
DESC
Specifies whether to sort a column in ascending or descending order.

colname
Specifies a column name. The column name is limited to 128 characters.

In a command, you can enter #c, where #c is the column number shown when the columns are listed
with the LIST TABLES command. In an SQL command, a column name can be preceded by a table or
correlation name and a period (tblname.colname).

GROUP BY
Returns a groups of rows as a summary resulting in only unique rows. This option is generally used with
SELECT Functions.

HAVING clause
Limits the rows affected by the GROUP BY clause.

ORDER BY clause
Sorts rows of data.

About the GROUP BY command

This optional clause groups rows according to the values in one or more columns and sorts the results.
GROUP BY consolidates the information from several rows into one row. This results in a table with one
row for each value in the named column or columns and one or more values per column.

The columns listed in the GROUP BY clause are related to those listed in the command clause. Any
column named in the GROUP BY clause can also be named in the command clause, but any column not
named in the GROUP BY clause can be used only in the command clause if the column is used in a
SELECT function.

Examples

The SELECT command clause can contain the columns named in the GROUP BY clause, and SELECT
functions that refer only to columns not named in the GROUP BY clause. Because the GROUP BY clause
processes information resulting from a WHERE clause, you can add a GROUP BY clause to see the sales
each employee has made:

SELECT empid FROM transmaster WHERE netamount < $100,000 +
GROUP BY empid

The following intermediate result table contains columns not named in the command clause because the
command clause has not been processed yet (not all the columns fit in the display, however). The first
part of the processing is to group the rows by empid. Because seven different employees are included,
the intermediate result table includes seven rows.

Intermediate Result Table-GROUP BY empid

Oterro 11 Help Manual290

Copyright © 1982-2024 R:BASE Technologies, Inc.

transid custid empid netamount

4975, 4980, 5000,
5060, 5045

101, 101, 101, 101, 100 102 $87,500, $22,500, $40,500,
$57,500, $3,060

4790, 4865, 5050,
5070

104, 102, 104, 104 129 $6,400, $34,125, $56,250,
$95,500

5015 103 131 $80,500

4760, 5080, 5048 100, 100, 103 133 $32,400, $88,000, $12,740

4780 105 160 $9,500

5046, 5049 101, 102 165 $3,060, $26,310

5047 102 167 $3,830

You can include more than one column in a GROUP BY clause. If you group the rows in the above
example by custid as well as empid, the command looks like this:

SELECT empid, custid FROM transmaster +
WHERE netamount < $100,000 GROUP BY empid, custid

In the following table, rows are now grouped by both empid and custid, resulting in eleven groups.

Intermediate Result Table-GROUP BY empid and custid

transid custid empid netamount

5045 100 102 $3,060

4975, 4980, 5000, 5060 101 102 $87,500, $22,500, $40,500, $57,500

4865 102 129 $34,125

4790, 5050, 5070 104 129 $64,000, $56,250, $95,500

5015 103 131 $80,500

4760, 5080 100 133 $32,400, $88,000

5048 103 133 $12,740

4780 105 160 $9,500

5046 101 165 $3,060

5049 102 165 $26,310

5047 102 167 $3,830

If one or more of the columns named in the GROUP BY clause contain null values, R:BASE forms a
separate group for null values. Review the result of this SELECT command for the employee table:

SELECT empid, emplname, hiredate, emptitle FROM employee

empid emplname hiredate emptitle

102 Wilson 03/18/90 Manager
129 Hernandez 08/28/91 Manager
131 Smith 04/14/92 -0-
133 Coffin 11/26/93 Representative
160 Simpson 01/09/94 -0-
165 Williams 07/05/92 Representative
167 Watson 07/10/92 Representative
166 Chou 07/10/93 Sales Clerk

If you group these rows by the emptitle column, which contains null values, you get the following
intermediate result table:

Intermediate Result Table-GROUP BY emptitle

R:BASE Database Commands 291

Copyright © 1982-2024 R:BASE Technologies, Inc.

empid emplname hiredate emptitle

102, 129 Wilson, Hernandez 03/18/90, 08/28/91 Manager

133, 165, 167 Coffin, Williams,
Watson

11/26/93, 07/05/92,
07/10/92

Representative

166 Chou 07/10/93 Sales Clerk

131, 160 Smith, Simpson 04/14/94, 01/09/94 -0-

6.15.5.13 HAVING

This clause determines which rows of data to include based on the results of a prior GROUP BY clause.

Options

AND
OR
AND indicates two conditions must both be true.
OR indicates either condition must be true.

condition
Specifies a combination of one or more expressions and/or operations that would evaluate to either true
or false. See "HAVING Conditions" below.

NOT
Reverses the meaning of an operator or indicates that a condition is not true.

About the HAVING command

The optional HAVING clause selects rows that meet one or more conditions from among the results of the
GROUP BY clause. HAVING works the same as a WHERE clause with the following exceptions:

· A WHERE clause modifies the intermediate results of a FROM clause; a HAVING clause modifies
the intermediate results of a GROUP BY clause.

· A HAVING clause can include SELECT Functions.

HAVING Conditions:

Oterro 11 Help Manual292

Copyright © 1982-2024 R:BASE Technologies, Inc.

Examples

To display sales information for only those employees who have made more than one sale to the same
customer, add a HAVING clause such as the following to one of the examples shown in GROUP BY. When
used in a HAVING clause, SELECT functions compute results based on the values grouped in the specified
column. In this HAVING clause, COUNT returns the number of values grouped in the transid column.

SELECT empid, custid FROM transmaster +
WHERE netamount < $100,000 +
GROUP BY empid, custid HAVING COUNT(transid) > 1

Intermediate Result Table-HAVING COUNT(transid) > 1

transid custid empid netamount

4975, 4980, 5000, 5060 101 102 $87,500, $22,500, $40,500, $57,500

R:BASE Database Commands 293

Copyright © 1982-2024 R:BASE Technologies, Inc.

4790, 5050, 5070 104 129 $6,400, $56,250, $95,500
5080 100 133 $32,400, $88,000

6.15.5.14 ORDER BY

This clause specifies how to sort the result of the SELECT command.

Options

,
Indicates that this part of the command is repeatable.

ASC
DESC
Specifies whether to sort a column in ascending or descending order.

#c
Takes the place of a column name and refers to the column numbers displayed with the LIST TABLE
command.

colname
Sorts by any column name or combination of column names.

seq_no
Refers to the items listed in the SELECT command that is using the ORDER BY command, ordered from
left to right. An item can be a column name, expression, or SELECT function.

About the ORDER BY Command

The syntax for the ORDER BY clause is the same for all commands. ORDER BY must refer to only one
table or view.

You can significantly reduce the time R:BASE takes to process an ORDER BY clause when the column or
columns listed in the ORDER BY clause are included in an index with the same column sort order as that
specified in the ORDER BY clause.

Using the SET SORT Command

The ORDER BY command uses the R:BASE automatic sort optimizer. If you are sorting extremely large
tables, and if your disk space is limited, the automatic sort optimizer might be unable to sort the data.
Instead, use the SET SORT ON condition because it uses the least disk space necessary to sort data;
however, the SET SORT ON condition is slower than the automatic sort.

Examples

The following command displays data from the custid, company, and custcity columns from the
customertable.

SELECT custid, company, custcity FROM customer

The ORDER BY clause in the command below arranges the custidvalues in descending order.

SELECT custid, company, custcity FROM customer +
ORDER BY custid DESC

Oterro 11 Help Manual294

Copyright © 1982-2024 R:BASE Technologies, Inc.

You can substitute a column's sequence number for a column named in the ORDER BY clause. You must
use a sequence number when referring to an expression, function, constant, or when a UNION operator
is used. The following command is equivalent to the command example above.

SELECT custid, company, custcity FROM customer ORDER +
BY 1 DESC

6.15.5.15 UNION

You can use this operator to combine the results of two or more SELECT statements.

About the UNION SELECT command

This optional operator combines the results of two SELECT commands or clauses, displaying the results
of the second SELECT command below those of the first. By default, UNION deletes duplicate rows.
Include the optional keyword ALL to include duplicate rows in the final result. You cannot combine sub-
SELECT commands using UNION.

The UNION operator requires the following three conditions:

· The SELECT statements must specify an equal number of columns.
· Columns that are being combined must have the same data type.
· Only the last SELECT statement can contain an ORDER BY clause.

Examples

The following example lists all employees and the sales transactions for each, including those employees
who have not yet completed a sale.

SELECT employee.empid, transid +
 FROM employee, transmaster +
 WHERE employee.empid = transmaster.empid +
UNION SELECT empid, 0 +
 FROM employee +
 WHERE employee.empid NOT IN +
 (SELECT empid FROM transmaster)

The first SELECT displays the empid column from the employee table and transid from the transmaster
table, linking the tables by the common column, empid. In short, the first SELECT displays all employees
who have made a sale.

The second SELECT command selects the empid column from employee, including rows only for those
employees who are not listed in the transmaster table. Because the results of the second SELECT are
appended to those of the first (by the UNION operator), those employees who have not yet made a sale
are shown at the bottom of the results with a zero in the transid column. The final results look like this:

empid transid

102 4795
102 4975
102 4980
102 5000
102 5045
102 5060
129 4790
129 4865
129 5050

R:BASE Database Commands 295

Copyright © 1982-2024 R:BASE Technologies, Inc.

129 5070
129 5075
131 4970
131 5010
131 5015
131 5085
133 4760
133 5048
133 5080
160 4780
160 4800
160 5065
165 5046
165 5049
166 0

6.15.5.16 HTML

This clause sends the SELECT command output into HTML format.

The rows and columns that each clause selects produce an intermediate result table that exists only in
temporary memory. One after another, the clauses restrict the rows or columns included in the
intermediate result table. After R:BASE has processed all the clauses, the intermediate result table
becomes the final result table.

Options

=backcolor
Is currently not supported; it must be set to: =default.

colname
Specifies a column name. The column name is limited to 128 characters.

=forecolor
Specifies the text color for the data in the column.

=h =w
Specifies height and width parameters. For both, the keywords LEFT, RIGHT, and CENTER can be used.
For width, the range is from 0 - 255 pixels. 0 is no width specification. The height is the addition of the
following values, one value from each item:

data justification: 0=default, 1=left, 2=center, 3=right
heading justification: 0=default, 4=left, 8=center, 12=right
vertical alignment: 0=default, 16=top, 32=middle, 48=bottom
HTML format flag: 0=no, 64=yes

HTML
Converts the data to HTML code.

'title'
This is the text that appears in the caption at the top of the Web Browser window. Adding 'title' creates
the beginning and ending table tag as well as putting the text you enter in the caption. Without 'title', a
partial HTML file with the selected data in table row format is generated.

Oterro 11 Help Manual296

Copyright © 1982-2024 R:BASE Technologies, Inc.

About the SELECT...HTML Command

The SELECT...HTML command is a modification of the SELECT command to output data in HTML format. If
a title is specified, a full HTML file will be generated. Otherwise, a partial HTML file with the selected data
in table row format will be generated.

6.15.6 SET

Use SET to change the current status of R:BASE special characters and operating conditions for any SET
category. The SET operating conditions are used to set the database environment while you build and run
commands from the R> Prompt or command files and applications.

About the SET Command

To change the setting from the R> Prompt for a special character, enter:

SET character_name = value

Do not use spaces on either side of the equal sign (=). For example:

SET QUOTES='

To change the setting from the R> Prompt for an operating condition, enter:

SET keyword setting

For example:

SET BELL ON

To remap keys on the keyboard from the R> Prompt, enter:

SET KEYMAP keyname = remapped keys

For example, if you want to remap [SHIFT] [F6] to [F2], enter:

SET KEYMAP [SHIFT] [F6] = [F2]

To reset a key to its original default value from the R> Prompt, enter:

SET KEYMAP keyname OFF

Saving Settings

Settings can be changed at the R> Prompt for the current session. They will revert to the default upon
exiting R:BASE. Users can save settings in the R:BASE configuration file. Some settings are stored within
the database itself and only the database owner can save changes to the settings that are stored in the
database. If you are not the database owner, you can only change the settings that are stored in the
database for the current database session.

The R:BASE/Oterro database provides the following categories of SET Keywords:

· Data Integrity
· Display Control
· Environment
· Format
· Programming
· Special Characters
· Transaction Processing and Multi-User
· Database Specific

R:BASE Database Commands 297

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.1 AND

Operating Condition

Syntax: SET AND ON/OFF

Default: ON

SET AND gives the connecting operator AND precedence over OR in WHERE, IF, and WHILE conditions.
When on, R:BASE processes conditions in the following order: all AND NOT followed by all AND OR, and
all AND before all OR conditions.

SET AND OFF directs R:BASE to process conditions from left to right. The WHERE clause A AND B OR C
AND D is evaluated as (((A AND B) OR C) AND D). SET AND ON directs R:BASE to give the operator AND
precedence over OR. The WHERE clause A AND B OR C AND D is evaluated as ((A AND B) OR (C AND
D)), which is a different result set.

6.15.6.2 ANSI

Operating Condition

Syntax: SET ANSI ON/OFF

Default: ON

Set ANSI off to restrict R:BASE to the list of reserved words shown in the table below. To change the
default, save the setting to the configuration file.

R:BASE reserved words with ANSI set off:

ABS ACOS AINT ALL

AND ANINT ASIN ATAN

ATAN2 AVERAGE CHAR CHKKEY

COS COSH COUNT CTR

CTXT CURRENT CVAL DATE

DATETIME DEXTRACT DIM ENVVAL

EXP FLOAT FOR FORMAT

FROM FULL FV1 FV2

GETKEY HELP ICAP1 ICAP2

ICHAR IDAY IDWK IFEQ

IFGT IFLT IFRC IHASH

IHR IMIN IMON IN

INT ISEC ISTAT IYR

JDATE LAST LASTKEY LAVG

LIMIT LIST LJS LMAX

LMIN LOG LOG10 LUC

MAXIMUM MINIMUM MOD NEW

NEWPAGE NEXT NINT NOT

OR OUTER PASSTAB PMT1

PMT2 PROMPT PROMPTS PV1

PV2 RATE1 RATE2 RATE3

RDATE RJS RTIME SFIL

SGET SIGN SIN SINH

SLEN SLOC SMOVE SPUT

SQRT SRPL SSUB STDEV

STRIM SUM TAN TANH

TDWK TERM1 TERM2 TERM3

TEXT TEXTRACT TMON UDF

ULC UNNAMED VARIABLE VARIANCE

WHERE

Oterro 11 Help Manual298

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.3 AUTOCOMMIT

Operating Condition

Syntax: SET AUTOCOMMIT ON/OFF

Default: OFF

Mode: Transaction Processing

SET AUTOCOMMIT toggles AUTOCOMMIT processing on and off. When transaction processing and
AUTOCOMMIT are on, each command that is executed successfully is immediately made permanent and
visible to network users. If transaction processing is on and AUTOCOMMIT is off, you must enter a
COMMIT command to make changes permanent. Also, leaving the database causes R:BASE to issue the
COMMIT command.

When transaction processing is on and AUTOCOMMIT is off, you can enter a series of commands (a
transaction) that change data or the database structure, then enter either a COMMIT or ROLLBACK
command. COMMIT makes permanent all changes executed by commands in the transaction. ROLLBACK
deletes all the changes, restoring the database to its state before the transaction began.

If you have started a transaction when you set AUTOCOMMIT on, R:BASE commits the transaction and
turns AUTOCOMMIT on. You cannot open a cursor while AUTOCOMMIT is set on, and you cannot set
AUTOCOMMIT on while a cursor is open.

AUTOCOMMIT can affect system performance. You can increase performance by setting AUTOCOMMIT to
on when you do not need to enter commands in groups.

6.15.6.4 AUTOCONVERT

Operating Condition

Syntax: SET AUTOCONVERT ON/OFF

Default: OFF

Set AUTOCONVERT on to automatically convert R:BASE databases created in versions prior to 6.0 to the
current R:BASE release. The user is not given the option to halt the conversion process.

6.15.6.5 AUTODROP

Operating Condition

Syntax: SET AUTODROP ON/OFF

Default: OFF

Controls the feature for a combo-box in a form to automatically drop-down the list when it gets focus.

When AUTODROP is SET to ON, this new setting controls the feature for a combo-box in a form to
automatically drop-down the list when it gets focus. The editable or non-editable automatic drop-down list
of combo box will
allow the user to place the value into a column or variable.

This new setting can be saved in your R:BASE configuration file or in your individual application startup
file.

Supported environments:

· Configuration File
· Command File

Notes:

R:BASE Database Commands 299

Copyright © 1982-2024 R:BASE Technologies, Inc.

· SHOW AUTODROP will display the current setting of AUTODROP.
· (CVAL('AUTODROP')) will return the current setting of AUTODROP

6.15.6.6 AUTORECOVER

Operating Condition

Syntax: SET AUTORECOVER ON/OFF

Default: OFF

Mode: Transaction Processing

If AUTORECOVER is set on, errors that can occur during transaction processing when the program in
interrupted, for example from a network or power failure, are automatically corrected.

6.15.6.7 AUTOROWVER

Operating Condition

Syntax: SET AUTOROWVER ON/OFF

Default: OFF

AUTOROWVER is used for Oterro compatibility only. If AUTOROWVER is set on, every CREATE TABLE or
ALTER TABLE command will add the SYS_ROWVER column if it does not already exist. The SYS_ROWVER
column is not comapatible with R:BASE 6.0 and lower databases.

6.15.6.8 AUTOSKIP

Operating Condition

Syntax: SET AUTOSKIP ON/OFF

Default: OFF

Set AUTOSKIP on to move the cursor automatically to the next data-entry field in a form after filling the
entire field. Specify off to press [Tab] after each entry. R:BASE stores the setting with the database.

6.15.6.9 AUTOSYNC

Operating Condition

Syntax: SET AUTOSYNC ON/OFF

Default: OFF

If AUTOSYNC is set on, connecting to a database will automatically synchronize the database files if
necessary. If AUTOSYNC is set off and an error occurs during the connect because the files are out of
sync, the database is not connected.

6.15.6.10 AUTOUPGRADE

Operating Condition

Syntax: SET AUTOUPGRADE ON/OFF

Default: OFF

AUTOUPGRADE converts R:BASE 6.0 databases to the current R:BASE release and adds the new system
tables for handling Stored Procedures and Triggers.

http://www.Oterro.com

Oterro 11 Help Manual300

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.11 BELL

Operating Condition

Syntax: SET BELL ON/OFF

Default: ON

Set BELL on to sound the bell when an error occurs. Specify off to suppress the bell. R:BASE stores the
setting with the database.

6.15.6.12 BLANK

Special Character

Sets the character for spaces. The BLANK character is used to separate words in a command string.

Syntax: SET BLANK=NULL

Syntax: SET BLANK=char
 (Use NULL to disable the special character.)

Default: (space)

6.15.6.13 BOOLEAN

Operating Condition

Syntax: SET BOOLEAN ON/OFF

Default: OFF

Set BOOLEAN to ON will specify that constants (e.g. TRUE, FALSE) in expressions will be treated as type
BOOLEAN values.

6.15.6.14 CAPTION

Operating Condition

Syntax: SET CAPTION 'window title'

SET CAPTION specifies a title for an application or a command file. This title appears in the title bar when
you run the application or command file.

6.15.6.15 CASE

Operating Condition

Syntax: SET CASE ON/OFF

Default: OFF

SET CASE sets the uppercase or lowercase distinction when a comparison is used with WHERE clauses, IF
structures, WHILE loops, the TALLY command, and in the RULES command where comparisons are equal
or not equal. R:BASE stores the setting with the database. If CASE is set off, both uppercase and
lowercase text are displayed for a comparison regardless of how you enter the text. For example, if you
enter "case", you could find "Case" and "CASE".

6.15.6.16 CHECKPROP

Operating Condition

Syntax: SET CHECKPROP ON/OFF

Default: OFF

R:BASE Database Commands 301

Copyright © 1982-2024 R:BASE Technologies, Inc.

CHECKPROP displays or suppresses error message for PROPERTY and GETPROPERTY commands during
processing. The PROPERTY/GETPROPERTY errors can be displayed if a Component ID is not found or if a
property value is invalid. The setting applies to use in forms, reports, and label. The errors are only
displayed if CHECKPROP is set ON.

6.15.6.17 CLEAR

Operating Condition

Syntax: SET CLEAR ON/OFF

Default: ON

Mode: Single-user

SET CLEAR determines when R:BASE clears the internal buffers and transfers the data to disk.

When CLEAR is set on, the internal buffers are cleared and data is transferred to disk after each
modification. Setting CLEAR on does not always make R:BASE automatically write each new or changed
row to disk. For example, when you use a form, R:BASE writes the edits to disk when you finish using the
form.

Set CLEAR off to write modified data to disk only when the buffer is full, a database is closed, or you exit
R:BASE. If CLEAR is set off, repetitive modifications to a database can run faster, but you could lose all
of your changes stored in the buffer if an accident, such as a fluctuation in power supply, occurs.

In multi-user mode, the CLEAR setting has no effect and always acts as though it is set on.

6.15.6.18 CLIPBOARD

Environment

Syntax: SET ClipBoard <TextString or Variable>

About the SET CLIPBOARD Command

Places the specified string onto the Windows clipboard, where it can be accessed from other programs.

EXAMPLE 01:

SET CLIPBOARD 'Here is text for the clipboard'

EXAMPLE 02:

Assuming you have already created a MS Word Document (TestDoc.DOC) or WordPerfect Document
(TestDoc.WPD).

-- ClipBrd.RMD
CONNect ConComp
SET VAR vAddressBlock TEXT = NULL
SET VAR vCustID INTEGER = 100
SELECT (Company+(CHAR(10))+CustAddress+(CHAR(10)) +
 +CustCity+','&CustState&CustZip+(CHAR(10))) +
 INTO vAddressBlock INDIC IvAddressBlock +
 FROM Customer WHERE CustID = .vCustID
SET CLIPBOARD .vAddressBlock
LAUNCH TestDoc.DOC
 or
LAUNCH TestDoc.WPD

Oterro 11 Help Manual302

Copyright © 1982-2024 R:BASE Technologies, Inc.

Once the MS Word or WordPerfect is launched and the document is opened, you could either use Edit >
Paste or Ctrl+V to paste the windows clipboard text!

The resulting pasted block of text would look like:

Pc Distribution Inc.
3200 Westminster Way
Boston, MA 02178

6.15.6.19 CMPAUSE

Operating Condition

Syntax: SET CMPAUSE ON/OFF

Default: OFF

CMPAUSE (Cascade Modal Pause) determines if R:BASE will use a local PAUSE dialog window for modal
PAUSE displays instead of the global PAUSE form. This means multiple modal PAUSE dialog windows will
appear on top of each other instead of prematurely closing the current modal PAUSE form.

6.15.6.20 COLOR

Operating Condition (R:BASE for DOS ONLY)

Syntax: SET COLOR
 SET COLOR FOREGRND color
 SET COLOR BACKGRND color
 SET COLOR BACKGRND (redvalue, greenvalue, bluevalue)

You can specify foreground and background colors for the DOS R> Prompt window. You can alter the
R:BASE for Windows R> Prompt background and font color by adjusting the settings available from the
main Menu Bar under "Settings" > "R> Prompt".

You can also specify colors using the SET command. For example, to change the background color to
cyan, enter:

SET COLOR BACKGRND cyan

You can even select a custom color for the background using a combination of red, blue, and green
values. For example, to change the background to orange, enter:

SET COLOR BACKGRND (255, 128, 64)

6.15.6.21 COMPATIB

Operating Condition

Syntax: SET COMPATIB ON/OFF

Default: ON

Compatibility with R:BASE Transactions

SET COMPATIB toggles COMPATIBILITY with R:BASE transactions on and off.

The first "compatibility" setting in R:BASE goes back to the 3.1 versions where it was used to allow
concurrent access to a database from both 3.1 and 2.11 at the same time. Remember that database files
back then were still "rbf" files. Once we went to the "rb1,rb2,..." files the setting was obsolete.

R:BASE Database Commands 303

Copyright © 1982-2024 R:BASE Technologies, Inc.

In 1997 when Oterro was first released, it supported a different scheme for managing transactions (when
TRANSACTIONS are set on) than R:BASE itself used at that time. This new scheme used a different file to
track transactions and had a larger allocated buffer size on the file to manage ongoing transactions. To
make R:BASE compatible with Oterro when transactions were on it needed to support the new method,
but it also needed to be able to support the older style that previous versions of R:BASE used (version
6.0 and older).

The first R:BASE version that could support the two methods was 6.1. When the "compatibility" setting is
on, R:BASE will use the older "non-Oterro" style of transaction. When "compatibility" is off, the Oterro
method will be used. If you never run with TRANSACTIONS ON then the compatibility setting does not
have any effect.

6.15.6.22 CURRENCY

Operating Condition

Syntax: SET CURRENCY $ PREF 2 B

SET CURRENCY sets the symbol, location, subunits, and format for currency values. R:BASE stores the
setting with the database.

Changing the CURRENCY parameters affects all columns in the database that have a CURRENCY data
type. You must enter the parameters in the following order: SYMBOL, PREF or SUFF, digits, and format;
that is, even if you want to change the digits only, you must also enter the symbol and its position.

· Symbol (default $)--A symbol is any ASCII character or string of one to four characters. You can
include a space in place of one character at the beginning or end of the string, but if you do, enclose
the string in quotation marks.

· PREF and SUFF (default PREF)--Specify the position of the symbol as before (PREF) or after (SUFF)
the currency value. In the SET CURRENCY command, enter a space between the symbol and its
position, PREF or SUFF.

· Subunit digits (default 2)--Indicates the number of digits from 0 to 16 to be displayed in a currency
subunit. In the case of dollars, the subunit is cents, so the digits setting for dollars is 2. For example,
setting digits to 3 will display currency values similar to these:

20.000,000DM
20,000.000
2,000.000

If you change digits when the database contains data, the new digit setting affects how R:BASE
displays and uses the data already entered. For example, if you change the setting from 2 to 4, an
existing value such as 1,234.00 becomes 12.3400.

· Format (default B)--Format specifies how R:BASE displays the thousands and decimal delimiters. A,
B, and C specify how the thousands and decimal delimiter displays for values with CURRENCY, REAL,
and DOUBLE data types. Before you change the format, you must change the DELIMIT character.

Delimiter Conventions for CURRENCY, REAL, and DOUBLE Values

Convention Thousands
Delimiter

Decimal Delimiter Example

A . , 123.456.793,01

B , . 123,456,793.01

C (blank) , 123 456 793,01

D N/A . 123456793.01

For example, to display currency in two digits with a prefix of DM (deutsche marks) with the display
format A, at the R> Prompt, enter:

http://www.Oterro.com

Oterro 11 Help Manual304

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET DELIMIT=!
SET CURRENCY DM PREF 2 A

This command displays 1,500 deutsche marks and 25 pfennigs in the format like this:

DM 1.500,25.

If you set CURRENCY to the delimiter formats A or C without changing DELIMIT to a character other
than the comma, the default setting for DELIMIT, R:BASE displays the following message: "Decimal
character cannot be the same as DELIMIT."

In this case, use SET DELIMIT to change the delimiter to a less commonly used character such as an
exclamation point; then set CURRENCY to the delimiter formats A or C.

6.15.6.23 DATE

Operating Condition

Syntax: SET DATE CENTURY value
 SET DATE YEAR value
 SET DATE MM/DD/YY (date sequence and format)
 SET DATE SEQ MMDDYY (date sequence)
 SET DATE FOR MM/DD/YY (date format)

SET DATE sets the date sequence for entry, and format for display. A valid date can have up to 30
characters. R:BASE stores the setting with the database.

Use the SET DATE CENTURY value command to set the default century (the first two digits of a four-digit
year). For example, if you enter a two-digit year and you want it to default to the twenty-first century,
enter the following command:

SET DATE CENTURY 20

A year such as "25" would be stored as "2025."

Use the SET DATE YEAR value command to have two default centuries for dates entered, depending on
the year. All years from 00 to (YEAR value-1) are stored with the next century (CENTURY value+1), and
all years from value to 99 are stored with the default century (CENTURY value). For example, you can
have all dates from the year 50 to 99 default to the twentieth century, and all dates from 00 to 49 default
to the twenty-first century by entering the following commands:

SET DATE CENTURY 19
SET DATE YEAR 50

The SET DATE CENTURY 19 command sets the default century to 19. The SET DATE YEAR 50 command
stores all years from 50 to 99 with the default century, 19. All dates from 0 to 49 are stored with the next
century, 20. Therefore, years entered from 50 to 99 are stored as 1950 to 1999, and years entered
from 00 to 49 are stored as 2000 to 2049.

Note: The DATE CENTURY and DATE YEAR options are only effective when the DATE SEQUENCE includes
a two-digit year (MMDDYY, DDMMYY, etc.).

R:BASE accepts a date between January 1, 3999 BC and December 31, 9999 AD. You can set the date
sequence and format separately. R:BASE displays the date based on the format. When setting the format
to display numerals for the month, day, and year, use a separator such as the slash (/), hyphen (-),
comma (,) or space (blank). For example, if you set the date format to MM/DD/YY and enter 061193,
R:BASE displays 06/11/93.

You can also include text for the weekday and month in the date format to a maximum of 30 characters.
Include WWW for a three-letter day abbreviation, WWW+ for the full day name, MMM for a three-letter
month abbreviation, and MMM+ for the full month name. If the date format contains spaces or commas,

R:BASE Database Commands 305

Copyright © 1982-2024 R:BASE Technologies, Inc.

enclose the format in quotes. For example, if the special character for QUOTES is set to the R:BASE
default ('), the format 'MMM DD, YYYY CC' displays Jun 11, 1993 AD.

If you use YY in the date format, R:BASE displays only the last two digits of the year. To view dates in
other centuries, use a date format with a four-digit year such as 'MM DD, YYYY'. If you use BC dates, add
CC to the format. Dates entered with BC are shown with BC; otherwise, the date is shown with AD. For
example, you could use the sequence MMDDYY and the format 'MMM DD, YYYY CC' to accept and display
BC dates. If you enter '06 11 93BC,' R:BASE displays Jun 11, 0093 BC.

Example: Valid date formats, using June 11, 1993

Date Format Display

'MMM+ DD' MM/YY June 11 06/93

'WWW the DD' 'WWW+, MMM+ DD, YYYY
CC'

Sun the 11 Sunday, June 11, 1993 AD

You can omit the SEQ and FOR keywords to set both sequence and format in a single SET DATE
command. For example, enter SET DATE MM/DD/YYYY to set both date sequence and format to a four-
digit year.

Enter the date in any form as long as the sequence of M's, D's, Y's, and C's are in the same order
defined for the date sequence. The display, however, is always exactly as defined by the DATE format.

If, for example, you set the date sequence to a four-digit year with SET DATE SEQ MMDDYYYY, set the
date format to a two-digit year with SET DATE FOR MM/DD/YY, and later enter a two-digit year, R:BASE
will store and might display a date you do not expect. As the following table shows, if you enter
06/11/93, R:BASE stores the date as 06/11/0093 and displays 06/11/93.

How R:BASE stores and displays dates

DATE Sequence Date Entered Date Stored

MMDDYYYY 6/11/94 06/11/0094

MMDDYY 6/11/0094 06/11/1994

MMYY 6/11 06/01/1994

MMDD 6/11 06/11/1994

DDYY 6/11 01/06/1911

DDYY 11/94 01/11/1994

DATE Format (2-digit Year) DATE Format (4-digit Year)

06/11/94 06/11/0094

06/11/94 06/11/1994

06/01/94 06/11/1994

06/11/94 06/11/1994

01/06/11 01/06/1911

01/11/94 01/11/1994

If the sequence is set to a four-digit year and the format is set to a two-digit year, R:BASE stores the
date you enter, such as 06/11/95, as a four-digit year. As a result, if you use a WHERE clause to display
rows that have dates greater than 06/11/95, R:BASE returns all rows greater than 06/11/0095.

The DATE format can affect date functions. For best results, set the format to the default MM/DD/YY and
then use a date function.

6.15.6.24 DEBUG

Operating Condition

Syntax: SET DEBUG ON/OFF

Default: OFF

You can use SET DEBUG as follows:

Oterro 11 Help Manual306

Copyright © 1982-2024 R:BASE Technologies, Inc.

1. Precede any R:BASE command you want to control with the DEBUG modifier in a command file.

2. Set DEBUG on to have R:BASE run the command; set DEBUG off to have R:BASE ignore the
command.

6.15.6.25 DELIMIT

Special Character

Separates a character, string, or items in a list used in commands. Also used to separate repeatable
parts of a command.

Syntax: SET DELIMIT=NULL
 SET DELIMIT=char
 (Use NULL to disable the special character.)

Default: ,

6.15.6.26 ECHO

Operating Condition

Syntax: SET ECHO ON/OFF

Default: OFF

SET ECHO displays or suppresses commands as they are processed from the current ASCII input device.
Specify on or ECHO to display commands; specify ECHO off or NOECHO to turn off the command display.

Use SET ECHO as a debugging technique as you develop a command file. With ECHO set on, you can see
the commands as they are processed when you run a command file. SET ECHO works only when the
command file is an ASCII file; it will not display commands that were run from a binary procedure file.

Enter a SET ECHO ON command at the beginning of the program. Then, when the program runs, R:BASE
displays each command as it is interpreted and, if needed, runs it. Sometimes the commands scroll on
the screen faster than you can read, especially if they are read by R:BASE but not run. You can
temporarily stop the display by pressing [Ctrl]+[Break], which stops the file from running, and restart it
by pressing [Enter], or stop completely by pressing [Esc]. Set ECHO off to suppress command display.

Even more useful, you can direct output to a printer or a file before you set ECHO to on. Then, when the
command file runs, the commands and any errors are saved either in printed form or in a file you can
look at.

When R:BASE runs the commands below in an ASCII file, you see the commands on lines two, three,
and four displayed at the top of the screen and the message displayed on line 10 beginning at column 20.

CLS
SET ECHO ON
WRITE 'This is a message' at 10 20
SET ECHO OFF

6.15.6.27 EDITOR

Environment Setting

Syntax: SET EDITOR RBEDIT/filespec

Default: RBEDIT

The SET EDITOR setting allows you to specify the internal R:BASE Editor or some other text editor as
your default text editor for R:BASE command files.

For example, if you wish to alter the default text editor to the external R:BASE Editor program, you would
use the following syntax:

R:BASE Database Commands 307

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET EDITOR C:\RBTI\RBEdit\RBEdit.exe

6.15.6.28 EOFCHAR

Operating Condition

Syntax: SET EOFCHAR ON/OFF

Default: ON

If EOFCHAR is set OFF, a control-Z character will not be appended to the end of output files.

6.15.6.29 EQNULL

Operating Condition

Syntax: SET EQNULL ON/OFF

Default: OFF

This Command determines whether or not NULL = NULL.

Compare these code samples:

SET VAR v1 TEXT = NULL

SET VAR v2 TEXT = NULL

SET EQNULL OFF

IF v1 = .v2 THEN
 -- will not be a hit

ENDIF

IF v1 <> .v2 THEN

 -- will not be a hit

ENDIF

IF v1 <> 'This' THEN

 -- will not be a hit (it used to be before this fix)

ENDIF

SET EQNULL ON

IF v1 = .v2 THEN

 -- will be a hit

ENDIF

IF v1 <> .v2 THEN

 -- will not be a hit

ENDIF

IF v1 <> 'This' THEN

 -- will be a hit

ENDIF

Before this fix, the comparison "IF v1 <> 'This' THEN" would be a hit with EQNULL set ON or FALSE when
it should only be a hit when EQNULL is ON. This means that now "IF (.v1) <> 'This' THEN" and "IF v1 <>
'This' THEN" will both process the same way. In the past they would be different because of this
problem.

Oterro 11 Help Manual308

Copyright © 1982-2024 R:BASE Technologies, Inc.

In your code if you want the comparison of a NULL variable and a non-NULL constant to be a hit then you
should run with EQNULL set ON.

6.15.6.30 ERROR MESSAGE

Special Condition

Syntax: SET ERROR MESSAGE Error# ON/OFF

Default: ON

SET ERROR MESSAGE Error# ON/OFF displays or suppresses a particular error message when a system
error occurs.

You can selectively turn OFF any -ERROR- message(s) in your command file (very handy for debugging)
by doing the following:

SET ERROR MESSAGE Error# OFF

To turn it back ON:

SET ERROR MESSAGE Error# ON

For example, to not see the:

-WARNING- No rows exist or the specified clause.

You can do the following:

SET ERROR MESSAGE 2059 OFF

This new feature has a limit of 50 -ERROR- numbers to set OFF and each one requires a separate
command.

NOTE: Each turned OFF message must be turned back ON before turning it OFF again. If not, you'll get
the error message.

6.15.6.31 ERROR MESSAGES

Operating Condition

Syntax: SET ERROR MESSAGES ON/OFF

Default: ON

SET ERROR MESSAGES displays or suppresses an error message when a system error occurs. Specify
off to suppress error and rule violation messages.

Error messages can also be suppressed after an initial error occurs. To do so, place a check within the
"Suppress Error Messages" check box. After doing so, error messages will not be displayed for the
instance of R:BASE until the program is restarted, or if the ERROR MESSAGES operating condition is set
ON.

R:BASE Database Commands 309

Copyright © 1982-2024 R:BASE Technologies, Inc.

The Error Message dialog contains "Help" button to display possible reasons for the error, and a "Copy"
button to capture the error.

6.15.6.32 ERROR VARIABLE

Operating Condition

Syntax: SET ERROR VARIABLE varname
SET ERROR VARIABLE OFF

SET ERROR VARIABLE defines an error variable to hold error message numbers. The variable name
(varname) defines the variable R:BASE uses to hold R:BASE error codes. If set to off (the default), error
variable processing is removed.

When an error occurs in a command file, R:BASE normally displays a system error message. SET ERROR
enables a programmer to anticipate errors in command and procedure files and program the file to keep
running even when an error occurs.
You must always set ERROR VARIABLE off, rather than clearing it with the CLEAR VARIABLES command.

R:BASE resets the error variable to zero as each command is successfully run. If an error occurs, the
error variable is set to the error number value. To determine the error condition for any line, you must
immediately check the value of the error variable or capture the error value in a global variable for later
examination.

By checking the error variable for a non-zero value, you can detect (or trap) many errors and run a
sequence of error-handling commands such as an error-recovery procedure. Once the error number is
captured in an error variable, you can write error-handling command files to control a program's flow
based on these errors (error values).

The error variable value is set for each command that is run, not each line in a command file. If you
have placed multiple commands on a line, the last command's error value is placed in the error variable.
A similar situation occurs for multi-line commands such as the subcommands you can use when loading a
data block with the LOAD command. For example, a data block loaded with the LOAD command leaves
the error variable with a value of zero because the END command runs successfully, whether or not the
data is actually loaded.

Rule violations do not set the error variable to a non-zero value; they are not the same as errors
recognized by R:BASE.

The command below defines errvar as the current error variable:

SET ERROR VARIABLE errvar

When a command is run, R:BASE sets the error variable errvar to the error code before anything else
happens. The following command lines illustrate how to use errvar in a command file.

LABEL tryagain
DIALOG 'Enter the database name:' vdbname vendkey 1

Oterro 11 Help Manual310

Copyright © 1982-2024 R:BASE Technologies, Inc.

CONNECT .vdbname
IF errvar <> 0 THEN
 WRITE 'Database not found.'
 GOTO tryagain
ENDIF

The first command establishes a label to return to, the second requests that the user enter the name of a
database, and the third opens the specified database using the global variable defined by the FILLIN
command.

The IF...ENDIF structure checks the error variable value. If the value is not zero (that is, if the database
was not opened successfully), then it sends a message to the screen and passes control to the label
tryagain so that the user is asked to enter the database name again.

You can also write a separate command file specifically designed to handle a variety of errors. In this
case, the above code might look like this:

DIALOG 'Enter the database name:' vdbname vendkey 1
CONNECT .vdbname
SET VARIABLE verr1 = .errvar
IF verr1 <> 0 THEN
 RUN errhandl.cmd USING .verr1
ENDIF

This series of commands captures the error value in the global variable verr1 so that it can be passed
through the USING clause of the RUN command to an error-handling routine. The routine itself
determines the nature of the error and how to take care of the problem.

You can use the WHENEVER command to run status-checking routines for SQL commands. WHENEVER
uses the special R:BASE variable SQLCODE.

6.15.6.33 ESCAPE

Operating Condition

Syntax: SET ESCAPE ON/OFF

Default: ON

SET ESCAPE allows you to use [Ctrl]+[Break] to escape or abort command file processing or database
file access. Specify on to enable users to abort processing in the middle of command files, WHILE loops,
and database access. Specify off to prevent users from prematurely aborting a command file or an
application such as when R:BASE runs processes that create new tables (such as the relational
commands) from within a command.

6.15.6.34 EXPLODE

Operating Condition (R:BASE for DOS only)

Syntax: SET EXPLODE ON/OFF

Default: OFF

Controls how DOS dialogs are displayed.

When EXPLODE is set on, dialog boxes are displayed in full size instantly. When EXPLODE is set off,
dialog boxes are displayed in an expanding fashion from the center.

R:BASE Database Commands 311

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.35 FASTFK

Operating Condition

Syntax: SET FASTFK ON/OFF

Default: OFF

This setting, when on, permits R:BASE to operate a foreign key index using a condensed index for
maintaining that foreign key. If the foreign key is not used for retrieving data or linking columns, a
complete index is unnecessary and actually inhibits speed. When set to on, R:BASE creates a condensed
index for any existing foreign keys.

To switch to condensed indexes on existing foreign keys, you need to run a PACK, PACK KEYS, or
RELOAD command with FASTFK on; these actions cause R:BASE to rebuild the database with condensed
foreign key indexes.

Keep in mind, however, that you might need complete indexes on foreign keys where such indexes are
needed for retrieving data. Retaining a separate index on columns used in foreign keys that link tables is
preferred. Indexes are also needed on foreign keys that you use for selecting column values; therefore,
use the CREATE INDEX command to explicitly create indexes for columns used in foreign keys in a
database where FASTFK is set on.

The command SHOW FASTFK displays the FASTFK state and whether FASTFK is operational in the current
database. For example:

SHOW FASTFK
(FASTFK) ON Use fast Foreign Key (FK) structures on rebuild.
OFF FASTFK setting for current database

Once you rebuild the keys in a database with the FASTFK setting on, SHOW FASTFK displays the
following:

SHOW FASTFK
(FASTFK) ON Use fast Foreign Key (FK) structures on rebuild
ON FASTFK setting for current database

6.15.6.36 FASTLOCK

Operating Condition

Syntax: SET FASTLOCK ON/OFF

Mode: Multi-user and STATICDB

Set FASTLOCK on for faster multi-user performance while modifying data. With FASTLOCK on, R:BASE
does not place a table lock on the table, allowing for greater throughput. A table lock is only needed to
prevent structure changes.

FASTLOCK can only be set on when STATICDB is set on, and both FASTLOCK and STATICDB must be set
on before the database is connected. Like other R:BASE database modes (SET MULTI and SET
STATICDB), FASTLOCK requires all users to be connected with the same setting.

The following command lines set STATICDB and FASTLOCK correctly.

SET STATICDB ON
SET FASTLOCK ON
CONNECT concomp

Oterro 11 Help Manual312

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.37 FEEDBACK

Operating Condition

Syntax: SET FEEDBACK ON/OFF

Default: OFF

This setting displays processing results when either calculating or editing rows.

With this setting on, R:BASE displays the number of rows processed and the elapsed time to completion
in a dialog window. Displays occur while in the Data Browser, when printing reports and labels, and when
using certain R:BASE commands including:

1. ALTER TABLE
2. AUTONUM
3. CREATE INDEX
4. DELETE
5. INSERT
6. LOAD
7. The data transfer for a PROJECT command
8. SELECT
9. SORTing a large record set
10. UNLOAD

When using any of the various commands at the R> Prompt with FEEDBACK set ON, the FEEDBACK
system variables are generated to hold the processed row count and elapsed time for the command.

RBTI_RowsInserted = 101010 INTEGER
RBTI_RowsDeleted = 0 INTEGER
RBTI_RowsUpdated = 0 INTEGER
RBTI_ElapsedTime = 0:00:01.468 TEXT

6.15.6.38 FILES

Operating Condition

Syntax: SET FILES value

Range: 1 to 255 files

Default: 5

SET FILES sets the maximum number of files that can be open at a time. The maximum, depending on
available memory, is 255.

6.15.6.39 FIXED

Operating Condition

Syntax: SET FIXED ON/OFF

Default: ON

Controls column width in SELECT

This controls whether R:BASE will automatically shrink column widths in SELECT commands.

6.15.6.40 FONT

Operating Condition (R:BASE for DOS ONLY)

Syntax: SET FONT keyword

R:BASE Database Commands 313

Copyright © 1982-2024 R:BASE Technologies, Inc.

Default: OEM

The FONT setting changes the font used in the "R> Prompt" window.

You can choose from three settings, which are mono-spaced stock fonts used in Windows:

· System--fonts compatible with the system font in Windows.
· OEM--an IBM PC character set for IBM computers.
· Ansi--a fixed-pitch font based on the Windows character set. A Courier font is typically used.

6.15.6.41 HEADINGS

Operating Condition

Syntax: SET HEADINGS ON/OFF

Default: ON

SET HEADINGS displays columns with or without headings when you enter the SELECT and TALLY
commands.

6.15.6.42 IDQUOTES

Operating Condition

Syntax: SET IDQUOTES

Default: Reverse Quote (`) Prior Versions: NULL

Controls the character that is used to set off object names.

IDQUOTES sets the character for enclosing object names, such as column or table names, in R:BASE and
ODBC commands. This is especially critical when using ODBC to connect to a non-R:BASE Database that
allows characters such as spaces in Column or Table names. This is also critical to SOME internal R:BASE
processing.

Note: Older databases may default to NULL which is not ODBC or SQL compliant.

In general, setting IDQUOTES will have no effect on legacy applications as they will not, in most cases,
know that this exists. The one exception to this is unloading data from a database that has IDQUOTES
set, such as an current upgraded R:BASE database, and importing into a Legacy database. If you are
attempting to do this you should set your IDQUOTES to NULL.

The Reverse Quote is located, on most standard US Keyboards, under the Tilde (~) character and to the
left of the numeral 1.

6.15.6.43 INDEXONLY

Operating Condition

Syntax: SET INDEXONLY ON/OFF

Default: ON

Sets a flag to disable "index only" select retrievals.

6.15.6.44 INSERT

Operating Condition

Syntax: SET INSERT ON/OFF

Default: ON

Oterro 11 Help Manual314

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET INSERT turns insert/overwrite on or off. Set INSERT on to use either the insert or overwrite mode.
Pressing the [Insert] key when you have specified INSERT to be on toggles you between insert mode and
overwrite mode. In insert mode, the cursor indicator is larger. Press the space bar to insert a space. Set
INSERT off to use only the overwrite mode; the cursor indicator is smaller.

6.15.6.45 INTERVAL

Operating Condition

Syntax: SET INTERVAL value

Default: 5

Range: 0 to 9 tenths of a second

Mode: Multi-user

The SET INTERVAL command specifies the time to elapse before R:BASE retries the command that
caused a conflict within the waiting period. Also, see WAIT.

6.15.6.46 KEYMAP

Operating Condition

Syntax: SET KEYMAP keyname OFF
 SET KEYMAP ALL OFF
 SET KEYMAP keyname=remapped keys

You can define key maps with a single statement, which enables you to define key maps in command
files. For example:

 SET KEYMAP [SHIFT][F3] TO [F2]
 SET KEYMAP [ALT]M= [F2]

To return to the original key mapping, enter the following:

 SET KEYMAP [ALT]M OFF

6.15.6.47 LAYOUT

Operating Condition

Syntax: SET LAYOUT ON/OFF

Default: ON

SET LAYOUT switches saving layouts on or off. When LAYOUT is set on, R:BASE saves the layout of data
displayed in the Data Browser when you exit. R:BASE saves layouts for single tables only. The next time
you display the table with the Data Browser, the layout of data will be as you previously arranged it.

When LAYOUT is set off, R:BASE does not save the layout of data and ignores any saved layouts. If you
want to see a table displayed in its default format without changing the saved layout for it, set LAYOUT
off before displaying the table.

6.15.6.48 LINEEND

Special Character

Syntax: SET LINEEND = value

DOS Default: þ [Alt]+[0254]

Windows Default: ^

R:BASE Database Commands 315

Copyright © 1982-2024 R:BASE Technologies, Inc.

You can set an end of line ASCII character for NOTE and TEXT fields in forms, reports and the Data
Browser. When you insert the character in those fields and then zoom in by pressing [SHIFT]+[F2] or
print a report, you see lines break as established by the line end character. The default character for
R:BASE database that migrated over the years from DOS versions is þ, the ASCII value 0254. The
default character for R:BASE for Windows is the carat (^).

Note: If the line end character has been set to the currency character, R:BASE changes it to ASCII value
0254 when you connect to a database.

6.15.6.49 LINES

Operating Condition

Syntax: SET LINES value

Range: 0 to 32,767 lines

Default: 20

SET LINES sets the number of lines per page or screen when you use the CROSSTAB, DISPLAY, DIR,
LIST, OUTPUT, SELECT, LIST RULES, SHOW VARIABLES, TALLY, or TYPE commands. LINES does not
affect report generation; you can define the number of lines on a page for each report. Setting LINES to
zero displays lines as continuous output.

6.15.6.50 LOCK

Operating Condition

Syntax: SET LOCK tbllist ON/OFF

Default: OFF

Mode: Multi-user

SET LOCK manually sets locks on or removes locks from tables specified in the list of tables (tbllist). Use
the command whenever you want a procedure or transaction to have exclusive use of tables. Setting
LOCK to off disables locks for each of the tables in tbllist.

In command or procedure files it is sometimes necessary to prevent access to a table or group of tables
while certain operations are performed. Although R:BASE handles most locks automatically according to
the command that is running, at times you might want more control over table locking. SET LOCK
provides you explicit control over access to tables during processing by the commands that retrieve and
update data.

If R:BASE cannot lock all the tables listed after SET LOCK, it issues a message saying that not all tables
are available to be locked. R:BASE does not lock any tables unless it can lock all tables listed, and it sets
an error code when SET LOCK fails.

Group the tables used into one SET LOCK command to avoid tying up needed resources. Be sure to issue
the SET LOCK OFF command to remove the locks after processing is complete. Locks set with this
command are cumulative. You need to issue one SET LOCK OFF command for each SET LOCK ON
command that you have entered for a given table. The user who set the table locks must issue SET LOCK
OFF; otherwise no other user can access the locked tables until the first user exits the database.

LIST displays locked tables in reverse video. With LIST TABLE, on the other hand, the type of multi-user
locks is displayed. Only the highest priority lock is displayed for each table.

LIST TABLE tells you whether the lock is an edit, row, cursor, local, or remote lock. Edit, row, and cursor
locks are set by R:BASE as part of its internal concurrency control. A local lock is set by a SET LOCK
command issued at the workstation that issued the LIST TABLE command. And a remote lock is set by a
command that obtains a table lock and is issued from a workstation other than the workstation that
issued the LIST TABLE command.

The first command line below sets an exclusive lock on the customer table. The second command line
sets additional exclusive locks on the transmaster and transdetail tables. These exclusive locks prevent

Oterro 11 Help Manual316

Copyright © 1982-2024 R:BASE Technologies, Inc.

access to the three tables by any user other than the one who issued the SET LOCK ON commands. The
SET LOCK OFF command removes the locks on all three tables.

SET LOCK customer ON
SET LOCK transmaster, transdetail ON
SET LOCK customer, transmaster, transdetail OFF

6.15.6.51 LOOKUP

Operating Condition

Syntax: SET LOOKUP value

Default: 5

SET LOOKUP tells R:BASE how many form look-up expressions to store in memory. Storing a look-up
expression in memory enables R:BASE to display data more quickly in a form. The number of look-up
expressions you can specify depends on the memory available in your computer. R:BASE needs
approximately 500 bytes of RAM for each look-up expression. SET LOOKUP does not affect master look-
up expressions or pop-up menus in a form.

For example, when your form contains 10 look-up expressions and LOOKUP is set to 5, only the first five
look-up expressions are stored in memory. R:BASE must retrieve/reevaluate the remaining look-up
expressions. So that the form works faster, you can set LOOKUP to a higher value to store more look-up
expressions in memory.

6.15.6.52 MANOPT

Operating Condition

Syntax: SET MANOPT ON/OFF

Default: OFF

MANOPT set to OFF disables the automatic table-order optimization that R:BASE performs when running
queries. This gives maximum control over the order in which columns and tables are assembled in
response to a query.

With MANOPT set to ON, R:BASE uses the order of the tables in the FROM clause and the order of the
columns in the column list of the SELECT clause to construct the query.

When MANOPT is set on, the #TABLEORDER system variable stores the table join order, and the
applicable indexed columns. To display the table order, use the following:

PAUSE 2 USING .#TABLEORDER

6.15.6.53 MANY

Special Character

Sets the character for the many wildcard for R:BASE commands and clauses.

Syntax: SET MANY=NULL
 SET MANY=char
 (Use NULL to disable the special character.)

Default: %

6.15.6.54 MAXTRANS

Operating Condition

Syntax: SET MAXTRANS value

R:BASE Database Commands 317

Copyright © 1982-2024 R:BASE Technologies, Inc.

Range: 1 to 1295

Default: 201

Mode: Transaction Processing

SET MAXTRANS specifies the maximum number of users who can have the same database open
concurrently with transaction processing on.

Only the first user to connect to a closed database can enter the MAXTRANS setting for that database.
Enter the command before connecting to the database. If anyone else already has the database open,
R:BASE displays a message telling you that your SET MAXTRANS command will have no effect on the
database.

MAXTRANS can affect system performance. The higher the MAXTRANS setting, the more overhead the
system must carry to process transactions across the network. Also, the more users who are actually
entering transactions, the slower the system operates.

6.15.6.55 MESSAGES

Operating Condition

Syntax: SET MESSAGES ON/OFF

Default: ON

SET MESSAGES either displays or suppresses system messages. Set MESSAGES to off when ERROR is
set on to display only error messages.

6.15.6.56 MIRROR

Operating Condition

Syntax: SET MIRROR <path>

Syntax: SET MIRROR OFF/DELETE

Default: OFF

SET MIRROR <path> maintains a duplicate copy of the database. This duplicate copy is created and
maintained in the directory designated in path. The duplicate database will have the same name,
therefore path must designate a backup directory. With this setting, all modifcations to the original
database are duplicated in the mirrored database.Be sure all users are mapped to the save drive letters.
SET MIRROR OFF turns off mirroring of the database; SET MIRROR DELETE turns off mirroring and then
deletes the duplicate database.

6.15.6.57 MOUSE

Operating Condition (R:BASE for DOS ONLY)

Syntax: SET MOUSE -1 to 100

Default: 30

Controls how DOS dialogs are displayed.

When EXPLODE is set on, dialog boxes are displayed in full size instantly. When EXPLODE is set off,
dialog boxes are displayed in an expanding fashion from the center.

Controls mouse sensitivity

Used with R:BASE for DOS only. SET MOUSE controls the period of time in hundreths of a second in
which the mouse registers a double click. Setting the time too low makes it impossible to double-click the
mouse. A setting of -1 disables the mouse. To set the mouse speed each time you use R:BASE, include
the SET MOUSE command in a startup file.

Oterro 11 Help Manual318

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.58 MULTI

Operating Condition

Syntax: SET MULTI ON/OFF

Default: OFF

SET MULTI sets Multi-User capability on or off when you next connect a database. This setting must be
used while you are disconnected from a database.

6.15.6.59 NAME

Operating Condition

Syntax: SET NAME network identification

Default: USER************** (USER and 14 numerals for date and time)

Mode: Multi-user

SET NAME specifies a network identification for your system when you start R:BASE. NAME is text and
can contain spaces.

NAME must be saved to the configuration file.

6.15.6.60 NAMEWIDTH

Operating Condition

Syntax: SET NAMEWIDTH value

Range: 4 to 128 characters

Default: 18

SET NAMEWIDTH controls the name width of a table, column, form, report, label, etc. that R:BASE directs
to the printer, screen, or file when using the SELECT and UNLOAD commands. The defined width value
specifically controls the number of characters for the first column in the displayed list, whether it is the
first column for a SELECT command, or the table names in a LIST TABLES command. Use the WIDTH
setting to control the number of characters for the entire row/line of data.

Do not set the width to a number greater than the number of characters your printer can fit on a line; a
typical page and computer screen display 80 characters. WIDTH does not affect report generation; each
report defines the width of a data line.

The LIST TABLES command produces the below results when NAMEWIDTH is 18 and WIDTH is 79.

R>LIST TABLES

 Name Columns Rows Comments
 ------------------- ------- --------- ------------------------------------
 BonusRate 3 7 Rates for Bonuses
 Component 2 12 Component Identification Number and
 Description
 CompUsed 2 22 Components Used in a Model
 Contact 12 35 Customer Contact Information
 ContactCallNotes 5 3 Contact Call Notes
 Customer 17 30 Customer Information
 DBAccess 1 1 Database Access
 Departments 8 31 Departments
 Employee 19 13 Employee Information

R:BASE Database Commands 319

Copyright © 1982-2024 R:BASE Technologies, Inc.

 FormTable 1 1 Dummy Table for Forms
 HourlyTemps 3 3 Temperature Data for Gauge

With the NAMEWIDTH value doubled to 36, the "Name" column width is increased. Notice that the
"Comments" column is now wrapped.

R>SET NAMEWIDTH 36
R>LIST TABLES

 Name Columns Rows Comments
 ------------------------------------- ------- --------- ------------------
 BonusRate 3 7 Rates for Bonuses
 Component 2 12 Component
 Identification
 Number and
 Description
 CompUsed 2 22 Components Used
 in a Model
 Contact 12 35 Customer Contact
 Information
 Customer 17 30 Customer
 Information

Increasing the WIDTH setting will display the "Comments" column without the wrapped characters.

R>SET WIDTH 120
R>LIST TABLES

 Name Columns Rows Comments
 ------------------------------------- ------- ---------

 BonusRate 3 7 Rates for Bonuses
 Component 2 12 Component Identification
Number and Description
 CompUsed 2 22 Components Used in a
Model
 Contact 12 35 Customer Contact
Information
 Customer 17 30 Customer Information
 DBAccess 1 1 Database Access
 Departments 8 31 Departments
 Employee 19 13 Employee Information
 FormTable 1 1 Dummy Table for Forms
 HourlyTemps 3 3 Temperature Data for
Gauge

6.15.6.61 NOCALC

Operating Condition

Syntax: SET NOCALC ON/OFF

Default: OFF

NOCALC suppresses or processes computed column expressions with the UNLOAD and LOAD
commands.

Oterro 11 Help Manual320

Copyright © 1982-2024 R:BASE Technologies, Inc.

If NOCALC is set to ON, then the UNLOAD command, as it creates LOAD statements, will generate new
"load only" commands as it starts each table. These "load only" commands would be CALC and NOCALC,
which operate in a fashion similar to CHECK/NOCHECK and FILL/NOFILL and NUM/NONUM commands.
The UNLOAD command will output the current values for the computed columns as it unloads the data.

In processing a LOAD command for a table, if it encounters a NOCALC command, then regardless of the
current setting for NOCALC, the LOAD command will expect values for every column, whether computed
or not. The values from the input would then be stored in those columns that are computed, rather than
doing the actual computation.

NOCALC allow users to preserve original computed values when using UNLOAD/LOAD to move data, or
when rebuilding a database with UNLOAD ALL.

Other methods for adding rows to a table, such as APPEND , the Data Browser, or a form, would all still
calculate each computed column. Only the LOAD command with its special CALC/NOCALC commands
could input a value into a computed column without doing the computation.

R:BASE stores the NOCALC setting with the database.

6.15.6.62 NOTE_PAD

Operating Condition

Syntax: SET NOTE_PAD

Range: 0 to 100 (percent)

Default: 10

This setting allocates an additional percentage of storage space in NOTE columns to accommodate value
increases (additional text), so that rows don't need to move to different disk locations. This increases
performance by reducing disk reading.

The default setting is 10% of the row size, and can be set from 0 to 100%. Setting NOTE_PAD to 0%
disables padding.

6.15.6.63 NULL

Special Character

Syntax: SET NULL -0- (1 to 4 characters)

Default: -0-

SET NULL sets the display symbol for null. You can use up to four characters. If you set null to a blank
space, R:BASE does not display rows composed entirely of nulls with the SELECT command. R:BASE
stores the setting with the database.

If you enter the following command, R:BASE displays a slash in the absence of data:

SET NULL /

6.15.6.64 ONELINE

Operating Condition

Syntax: SET ONELINE ON/OFF

Default: OFF

Controls text and note field wrapping.

When set to ON NOTE and TEXT fields will never wrap to the next line in Reports and SELECT commands.
Instead they will be truncated at the end of the column.

R:BASE Database Commands 321

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.65 OTDEBUG

The Oterro Engine OTDEBUG setting is available to create a log file to help understand possible issues
when running commands and using ODBC with foreign data sources. The log file will contain Engine
Functions as Oterro establishes and frees connections, executes SQL statements, retrieves data and
values, controls transactions, and handles data and values.

To enable debugging, add the OTDEBUG setting to your Oterro product configuration file, which creates a
log file of the Oterro Engine Functions.

The following provides the supported use of the OTDEBUG setting in the configuration file:

01. - Debugging is off

OTDEBUG OFF

02. - Debugging is on, where a log file is created in C:\

OTDEBUG ON

03. - Debugging is on with a file path and name. For the below, the ot_engine.log file is created in the C:
\Temp\OTDEBUG\ folder.

OTDEBUG ON C:\Temp\OTDEBUG\ot_engine.log

After the OTDEBUG setting has been turned ON or OFF, the program instance using the Oterro connection
must be restarted in order for the setting to be recognized.

Important: The debug setting and logging adds overhead to the Oterro engine and performance will
decrease. After logging has been captured for a desired event where an issue occurs, the debug setting
should be set to OFF in the configuration file.

When OTDEBUG is OFF the log file may remain in the configuration file.

OTDEBUG OFF C:\Temp\OTDEBUG\rbengine.log

The default location for the Oterro configuration files is in "C:\Users\Public\RBTI", with OTERRO11.CFG
used for Oterro 11.

6.15.6.66 PAGELOCK

Operating Condition

Syntax: SET PAGELOCK ON/OFF

Mode: Multi-user

Default: ON

PAGELOCK specifies how R:BASE locks data when updating and deleting rows.

The settings for PAGELOCK are:

· ON - R:BASE uses page locking or row locking as appropriate. When PAGELOCK is ON and two or
more users are updating rows within the same page of data, R:BASE only lets the first user update
rows--the other users are locked out until the first user's update has been completed.

· OFF - R:BASE uses a fast row-locking method where only row locking is applied with no page
locking. When PAGELOCK is OFF, you can lock rows of data instead of locking a page of data. You
increase multi-user performance when PAGELOCK is OFF. And even more so when STATICDB and
FASTLOCK are on.

Oterro 11 Help Manual322

Copyright © 1982-2024 R:BASE Technologies, Inc.

If you know that your application mainly updates or deletes data a row at a time, rather than many rows,
set PAGELOCK to OFF for row locking. In this case, R:BASE locks a row, reads the row, makes the
change, and then releases the row. Otherwise, set PAGELOCK ON for page locking when you are doing
an UPDATE and/or DELETE affecting many rows in a table.

Keep in mind that the PAGELOCK setting can be changed dynamically and can be different for different
users using the same database.

Technically, the efficient and fastest method for updating data in multi-user environment is to SET
STATICDB ON, SET FASTLOCK ON, and SET PAGELOCK OFF. This particular combination will result in the
fewest contentions between users.

Notes:

· FASTLOCK and PAGELOCK can be set on at the same time.
· Setting STATICDB and FASTLOCK to ON (in that order), with PAGELOCK set to OFF will

significantly increase multi-user performance with individual row changes.
· PAGELOCK is not the same as SET ROWLOCKS.
· Setting the value of PAGELOCK does not change the setting of ROWLOCKS.
· The PAGELOCK setting can be changed dynamically and can be different for different users using

the same database.

Example for Testing:

 -- The UPDATE must alter the values for may rows

SET FEEDBACK ON
SET PAGELOCK ON -- use page locking

UPDATE <tablename> SET <columnname> = value -- no WHERE Clause

SET PAGELOCK OFF -- use row locking

SET FEEDBACK OFF
CLS

6.15.6.67 PAGEMODE

Operating Condition

Syntax: SET PAGEMODE ON/OFF

Default: OFF

Mode: Single- or Multi-user

Use PAGEMODE to design reports through a custom R:BASE program. With PAGEMODE on, you create a
page of a report in memory, then send the report to a printer or file. PAGEMODE is an alternative method
to creating reports through the Report Designer; the two methods work in different ways.

The WRITE, SHOW VARIABLE, and SELECT commands are used to "display" data on a virtual page. To
determine the row location of the cursor on the virtual page, use the ISTAT function with the keyword
PAGEROW after a SHOW VARIABLE command. (ISTAT('pagerow') does not work with the WRITE
command.) The DECLARE CURSOR command is usually used for retrieving data for printing. You control
form feeds (new pages) in your program by using the NEWPAGE or OUTPUT SCREEN command.

At the beginning of your program, set both SET LINES and SET WIDTH to accommodate the report's size.
Then set PAGEMODE to on. You cannot write to a line longer than the current LINES setting or wider than
the current WIDTH setting. You also cannot change the LINES and WIDTH setting without setting
PAGEMODE to off first.

To send printer control codes to a printer, use the CHAR function to define a variable containing the
printer control codes. Then, that variable is sent to the printer using the SHOW VARIABLE or WRITE
command. For example,

 SET VARIABLE vLandscape = (CHAR(27) + CHAR+

R:BASE Database Commands 323

Copyright © 1982-2024 R:BASE Technologies, Inc.

 (38) + CHAR(108) + CHAR+
 (49) + CHAR(79))
 WRITE .vLandscape

The printer control codes can be found in the user's manual for your printer. PAGEMODE allows you to:

Create reports wider than 255 columns and longer than 84 lines.

· Produce multi-column reports.
· Design different styles for the pages of the report, such as a report with a personalized letter as

the first page.
· Create reports from tables with many-to-many relationships that have two or more detail sections.
· Format odd and even pages differently throughout a report.
· Print headers and footers only on the last page or first page.
· Customize reports so break headers and footers are located on the same page.
· Place a different break header on every page or the same break header on every page.

The following command line sets PAGEMODE on:

 SET PAGEMODE ON

6.15.6.68 PASSTHROUGH

Operating Condition

Syntax: SET PASSTHROUGH ON/OFF

Default: OFF

When PASSTHROUGH is set on, SELECT statements are sent directly to the foreign data source and are
not processed by R:BASE. Set PASSTHROUGH on when you use special syntax, such as non-SQL syntax,
or syntax that is not supported by R:BASE.

6.15.6.69 PLUS

Special Character

Sets the character for the command line continuation character.

Syntax: SET PLUS=NULL

Syntax: SET PLUS=char
 (Use NULL to disable the special character.)

Default: +

6.15.6.70 POSFIXED

Operating Condition (R:BASE for DOS ONLY)

Syntax: SET POSFIXED ON/OFF

Default: OFF

Controls how the AT parameter works.

When you use AT row,col to position dialog, pause and other windows, the actual position depends on the
current font size of the R> Prompt window. If you always want the calculation to use the 8x12 size of the
OEM font then set POSFIXED to ON. If you want the dimensions of the current font to be used then set
POSFIXED to OFF.

Oterro 11 Help Manual324

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.71 PRINTER

Operating Condition (R:BASE for DOS ONLY)

Syntax: SET PRINTER printername

Controls the DOS printer

SET PRINTER specifies the printer for your system. The configuration file reads the printer file and sets
the printer values as variables for the printer.

 SET PRINTER epson.prd

This command specifies an Epson printer as the printer file named in the configuration file. The extension
.PRD is not required.

6.15.6.72 PROCEDURE

The SET PROCEDURE command locks a procedure so it can be replaced.

Area: Stored Procedures & Triggers

Options

ON
Enables a lock

OFF
Disables a lock set by SET PROCEDURE or GET LOCK.

About the SET PROCEDURE Command

The SET PROCEDURE works like the GET LOCK command without retrieving the Stored Procedure into an
ASCII file. ON sets the lock; OFF releases the lock placed by the SET PROCEDURE or the GET command.

When a procedure is locked, only the user placing the lock can replace the procedure or remove the
lock. The NAME setting is used for identification of the user.

6.15.6.73 PROGRESS

Operating Condition

Syntax: SET PROGRESS ON/OFF

Default: OFF

This setting displays processing results when building indexes, packing or reloading a database. With this
setting on, R:BASE displays the process being performed, the overall progress, and the completion
percentage of each.

6.15.6.74 QUALCOLS

Operating Condition

Syntax: SET QUALCOLS n

R:BASE Database Commands 325

Copyright © 1982-2024 R:BASE Technologies, Inc.

Default: 10

QUALCOLS specifies the number of qualkeys to assign to SQL attached tables.

When attaching external tables by selecting "Utilities" > "Attach SQL Database Tables" from the menu
bar, or using the SATTACH command, the QUALOCOLS setting is used to assign what columns uniquely
identifies a row.

If a primary key or unique key was not found for the table being SATTACHed, and the USING clause was
not used to specify what columns uniquely identifies a row, then R:BASE assigns primary and unique key
qualkeys for the attached table. R:BASE assigns a set of columns to identify the rows starting with the
first column of the table. The number of columns used is limited by the value for QUALCOLS.

The following command line sets QUALCOLS to 5:

SET QUALCOLS 5

6.15.6.75 QUOTES

Special Character

Sets the character for quotation marks.This character is used around all text strings.

Syntax: SET QUOTES=NULL
 SET QUOTES=char
 (Use NULL to disable the special character.)

Default: '

6.15.6.76 RBADMIN

Operating Condition

Syntax: SET RBADMIN ON/OFF

Default: OFF

The RBADMIN setting is used for RBAdmin, the R:BASE Network Database Administrator utility.

In order for RBAdmin to disconnect users from the database, this setting must be set to ON. All users,
whether their setting for RBADMIN is ON or OFF will be seen within RBAdmin. It is recommended that this
setting be added to a database application startup file for ease of implementation with RBAdmin. When
RBADMIN is set ON and connections are made to the database, a hidden binary file will be created in the
database directory. The name of the file is unique to each database; consisting of "RBAdmin_" + dbname
+ ".bin". The binary file for the ConComp sample database, with RBADMIN set ON, would be
"RBAdmin_ConComp.bin".

6.15.6.77 RECYCLE

Operating Condition

Syntax: SET RECYCLE ON/OFF

Default: OFF

If RECYCLE is ON, when adding new rows require a new block from file 2, a new routine is called which
searches for a suitable unused block rather than always adding a new block to the end of the file

The criteria for such a block are:

· No other table uses it
· The block is further down the file than the current last block of the table

http://www.rbaseadmin.com

Oterro 11 Help Manual326

Copyright © 1982-2024 R:BASE Technologies, Inc.

PROS
If a suitable block is found, the block will be allocated to the table requiring the additional space and File
2 will not grow as a result of this allocation. The main benefit of using RECYCLE is that the growth of File
2 will be minimized. Over time this can add up to significant savings on disk space and backup media.

CONS
Since a new routine is being called to search for a suitable block, there will be a slight performance
penalty. The penalty will only be incurred when an INSERT requires a new block.

Considerations
For RECYCLE to be effective, all users should have the setting ON. Do this in the configuration file.
RECYCLE will only have an impact when used in conjunction with PACK TABLE. Dead space in File 2 must
first be freed up before it can be reused. RECYCLE will not be of benefit if your database does not end up
with lots of deleted rows over time, providing the opportunity to recover dead space.

Conclusions
Periodic use of PACK TABLE tablename in conjunction with RECYCLE ON will retard File 2 growth and
reduce fragmentation. Use of PACK INDEX FOR tablename will keep the index statistics fresh and query
optimization results maximized. The need for planned downtime will be reduced.

6.15.6.78 REFRESH

Operating Condition

Syntax: SET REFRESH value

Range: 10 to 65535 seconds

Default: 0

Mode: Multi-user

SET REFRESH specifies how often R:BASE refreshes the form or the Data Browser, and displays current
data. It also automatically recalculates lower tables in forms. Specify zero to turn the setting off. When
REFRESH is set off, R:BASE tells you of edits when you save or delete a row.

6.15.6.79 REVERSE

Operating Condition

Syntax: SET REVERSE ON/OFF

Default: ON

SET REVERSE ON displays data-entry fields in reverse video in forms. R:BASE stores the setting with the
database.

6.15.6.80 ROWLOCKS

Operating Condition

Syntax: SET ROWLOCKS ON/OFF

Mode: Multi-user

Default: ON

R:BASE uses row-level locking in a multi-user environment. This command causes R:BASE to lock only
the required row for the current command instead of locking the entire table. For example, if multiple
users are modifying the same table using the UPDATE command, R:BASE locks only the rows affected by
each UPDATE. When ROWLOCKS is set off, R:BASE sets table locks during each UPDATE, regardless of
how many rows are affected.

R:BASE Database Commands 327

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.81 RULES

Operating Condition

Syntax: SET RULES ON/OFF

Default: ON

SET RULES determines whether R:BASE checks data against all existing rules during data entry and
modification when you use the EDIT, EDIT USING, ENTER, INSERT, LOAD, or UPDATE commands, or the
import/export utility.

Set RULES off to direct R:BASE to ignore all rules when rules are not defined for a table, you are
archiving data, or you are transferring data into another database. This speeds up processing because
R:BASE normally checks the SYS_RULES table even if no rules are defined for a table. R:BASE does,
however, check each entry against the data type of the column regardless of the RULES setting. If the
database is protected by a database owner's user identifier, R:BASE does not accept the SET RULES
command until you enter the owner's user identifier.

6.15.6.82 SCRATCH

Operating Condition

Syntax: SET SCRATCH ON / OFF / TMP / <path>

Default: TMP

SET SCRATCH sets the drive and directory location for temporary files created when sorting data.

· SET SCRATCH ON to store temporary sort files on the database drive and directory.

· SET SCRATCH OFF to store temporary files on the current drive and directory.

· SET SCRATCH TMP to store temporary files in the Windows TEMP directory.

· SET SCRATCH <path> provides the path to the location where temporary files are stored.

You can use the SCRATCH command in the configuration file so that the setting is made prior to
launching R:BASE.

About SCRATCH TMP

By default, R:BASE configuration files include the TMP for SCRATCH setting.

This default will allow R:BASE or Oterro sessions to use the user's TMP environment settings for
SCRATCH files on startup and eliminate all issues related to setting the SCRATCH directory and related
files.

To take advantage of this setting, use the option "SCRATCH TMP" in the appropriate R:BASE and
OTERRO configuration files or use the "SET SCRATCH TMP" command in your application startup files.

6.15.6.83 SELMARGIN

Operating Condition

Syntax: SET SELMARGIN value

Range: 0 to the width of your screen

Default: 0

Oterro 11 Help Manual328

Copyright © 1982-2024 R:BASE Technologies, Inc.

Use SELMARGIN to set the left margin for displaying the results of a SELECT command. The default for
SELMARGIN is 0 (zero), which sets the margin to column 2. Use SELMARGIN when an ASCII file requires
a predefined position or when data has a required starting point.

Note: Setting SELMARGIN to 0 (zero) or 2 begins the left margin at column two.

6.15.6.84 SEMI

Operating Condition

Syntax: SET SEMI ON/OFF

Default: OFF

Use SEMI to set the semicolon (;) key as the command terminator instead of the [Enter] key.

When SEMI is set on, you can enter multiple command lines without a continuation symbol. Also, the
semicolon runs commands created for other SQL databases, such as SQL Server.

Note: When SEMI is set on, all commands, including EXIT, must be followed with a semicolon.

The following command line sets SEMI off:

SET SEMI OFF;

6.15.6.85 SEMI (Special Character)

Special Character

Sets the character for the command separator.

Syntax: SET SEMI=NULL
 SET SEMI=char
 (Use NULL to disable the special character.)

Default: ;

6.15.6.86 SERVER

Operating Condition

Syntax: SET SERVER ON/OFF

Default: ON

SET SERVER sets messages from a foreign data source on or off. When SERVER is set on, messages
from the foreign data source are displayed.

6.15.6.87 SHORTNAME

Operating Condition

Syntax: SET SHORTNAME ON/OFF

Default: OFF

Alters the display format of the directory contents, where the file names are listed.

With SHORTNAME set to ON, the DIR command lists the file name, extension, size in bytes, and the date
and time files were last modified, only listing the contents in the traditional format.

Example 1:

The following command could be used to review the database files placed in a temp folder. The display
uses SHORTNAME set to OFF.

R:BASE Database Commands 329

Copyright © 1982-2024 R:BASE Technologies, Inc.

R>DIR *.RX?

 Volume in drive C is Acer
 Volume Serial Number is 4060-5572

 Directory of C:\Temp\

17.11.11 04:56 PM 48,458 RBTIDATA.RX1
17.11.11 04:56 PM 3,112,960 RBTIDATA.RX2
17.11.11 04:56 PM 770,048 RBTIDATA.RX3
17.11.11 04:56 PM 12,288 RBTIDATA.RX4
25.08.11 01:38 PM 73,146 RRBYW17.RX1
25.08.11 01:38 PM 1,310,720 RRBYW17.RX2
25.08.11 01:38 PM 180,224 RRBYW17.RX3
25.08.11 01:38 PM 3,964,928 RRBYW17.RX4
 8 File(s) 9,472,772 bytes
 0 Dir(s) 41,285,623,808 bytes free

Example 2:

The following command could be used to review the database files placed in a temp folder. The display
uses SHORTNAME set to ON.

R>DIR *.RX?

 Volume in drive C is Acer
 Directory of C:\Temp\

RBTIDATA RX1 48458 17.11.11 04:56p RBTIDATA.RX1
RBTIDATA RX2 3112960 17.11.11 04:56p RBTIDATA.RX2
RBTIDATA RX3 770048 17.11.11 04:56p RBTIDATA.RX3
RBTIDATA RX4 12288 17.11.11 04:56p RBTIDATA.RX4
RRBYW17 RX1 73146 25.08.11 01:38p RRBYW17.RX1
RRBYW17 RX2 1310720 25.08.11 01:38p RRBYW17.RX2
RRBYW17 RX3 180224 25.08.11 01:38p RRBYW17.RX3
RRBYW17 RX4 3964928 25.08.11 01:38p RRBYW17.RX4
 8 File(s) 9472772 bytes
 8 Dir(s) 41285361664 bytes free

6.15.6.88 SINGLE

Special Character

Sets the character for the single wildcard for R:BASE commands and clauses.

Syntax: SET SINGLE=NULL
 SET SINGLE=char
 (Use NULL to disable the special character.)

Default: _

6.15.6.89 SORT

Operating Condition

Syntax: SET SORT ON/OFF

Default: OFF

Oterro 11 Help Manual330

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET SORT sets the sort optimizer on or off. When set on, R:BASE sorts the minimal amount of data for
large tables and recombines the sorted data with the unsorted rows using the minimum amount of disk
space. Set SORT on when a sort fails.

SORT is only to be used when displaying a column, or columns, which are not indexed. Otherwise, no
results will be displayed.

6.15.6.90 SORTMENU

Operating Condition

Syntax: SET SORTMENU ON/OFF

Default: ON

SORTMENU causes all data dictionary menus to be in alphabetical ascending order, including all pop-up
menus that display tables, forms, views, labels, and reports. Menus with column names and values
remain unsorted in their original order.

6.15.6.91 STATICDB

Operating Condition

Syntax: SET STATICDB ON/OFF

Mode: Multi-user

Default: OFF

Activates a read-only schema mode. A user who first connects to a database with STATICDB set to on
engages that database to operate in a read-only schema mode whereby any user must have their
STATICDB setting on in order to connect to that database.

The effect of having STATICDB set on is that no schema changes can occur during that connection
session.

6.15.6.92 TIME

Operating Condition

Syntax: SET TIME SEQUENCE HHMMSS (time sequence)

SET TIME FORMAT HH:MM:SS (time format)

Default: SET TIME SEQUENCE HHMMSS (time sequence)

SET TIME FORMAT HH:MM:SS (time format)

SET TIME sets the time entry sequence and output format, using up to 20 characters. Set TIME entry
sequence and display format in separate commands. Use H to specify hours, M for minutes, S for
seconds, and .SSS for thousandths. TIME can be specified of up to thousandths of a second. R:BASE
stores the setting with the database.

The keyword SEQ (sequence) sets the entry sequence such as HHMMSS while the keyword FOR (format)
sets the display format. For example, the format HH:MM:SS can display 14:30:20. R:BASE displays
midnight (24:00) as 0:00. You can also include AP to display time on a 12-hour clock. In the previous
example, if you change the format to HH:MM:SS AP, R:BASE displays 2:30:20 PM. If the format contains
spaces or commas, enclose the format in quotes. Enter the hours, minutes, and seconds in the order SEQ
specifies.

Example: Valid Time Formats using two thirty and twenty seconds, p.m.

Time Format Displays

HH:MM:SS 14:30:20

R:BASE Database Commands 331

Copyright © 1982-2024 R:BASE Technologies, Inc.

HH:MM:SS AP 2:30:20 PM

HH/MM/SS 14/30/20

HH-MM-SS AP 2-30-20 PM

TIME can affect time functions. For best results, first set TIME to the default HH:MM:SS and then use the
time functions.

6.15.6.93 TIMEOUT

Operating Condition

Syntax: SET TIMEOUT value

Range: 0 to 1440

Default: 0

Use TIMEOUT to shut down an inactive R:BASE workstation and exit to Windows after a set amount of
time passes. A countdown only begins when R:BASE is waiting for a keystroke, not while R:BASE is
processing commands or while you are entering data. This is a useful feature for automatically
disconnecting idle R:BASE sessions for scheduled database maintenance.

The default for TIMEOUT is 0 (zero), which does not activate a countdown. TIMEOUT is set in minutes (not
seconds), and all workstations must set TIMEOUT separately.

When a TIMEOUT occurs, a command file can be run; however, the command file cannot expect a
keystroke. If you want to run a command file when a TIMEOUT occurs, you need to store the name of
the file in a variable called RBTI_TIMEOUT.

For example:

SET VARIABLE RBTI_TIMEOUT TEXT = 'c:\CustDB\cleanup.rmd'

The following command line will exit a user to Windows after the user's workstation is inactive for one
hour:

SET TIMEOUT 60

Notes:

· The RBTI_TIMEOUT command file must end with a RETURN command.

· The TIMEOUT command will close ANY and ALL open forms, designers, and editors WITHOUT saving
the changes which have been made since the last save. It is the responsibility of the developer and
end-user to implement proper coding and/or behavior to eliminate unexpected shutdowns without
saving the changes. The TIMEOUT command will disconnect from the currently opened database (if
applicable) before terminating the R:BASE session.

6.15.6.94 TOLERANCE

Operating Condition

Syntax: SET TOLERANCE value

Default: 0

SET TOLERANCE sets the tolerance for comparisons between numbers with REAL and DOUBLE data
types. The default tolerance of 0 means that the match must be exact to six digits of accuracy for REAL
numbers and to 15 digits of accuracy for DOUBLE numbers. R:BASE stores the setting with the database.

The following command specifies a tolerance of .1 when testing column values. If the tolerance is .1 and
the WHERE clause specifies colname = 100, then values between 99.9 and 100.1 are valid. If you set the
tolerance to one, the values between 99 and 101 are valid.

Oterro 11 Help Manual332

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET TOLERANCE .1

6.15.6.95 TRACE

Operating Condition

Syntax: SET TRACE ON/OFF

Default: OFF

SET TRACE ON will execute TRACE (Interactive Command File Debugger) inside a command file to trace
a block of code as defined.

Example 01:

TRACE filename.ext (typical command line option)

Example 02: (in a command file)

your code here
SET TRACE ON (this will start the trace within a command file)
Your code here ...
SET TRACE OFF (this will stop the trace within a command file)
Your remaining code here ...

Notes:

· Once you turn OFF the TRACE in an R:BASE session, you will need to turn it back ON.
· (CVAL('TRACE')) will return the current status of TRACE (Values: ON or OFF)
· SHOW TRACE will display the current status of TRACE (Values: ON or OFF)
· Newly created configuration file will also include the option for TRACE ON
· If you want no one to TRACE your code, setting the TRACE option to OFF at the beginning of your code

or startup file will disable the TRACE command.

6.15.6.96 TRANSACT

Operating Condition

Syntax: SET TRANSACT ON/OFF
 SET TRANS ON/OFF

Default: OFF

Mode: Transaction Processing

SET TRANSACT toggles transaction processing on and off. When transaction processing is set on and
AUTOCOMMIT is set off, all commands entered after one COMMIT or ROLLBACK command until the next
comprise a transaction. The commands in a transaction are executed as they are entered, but changes to
the data and database structure are not made permanent until you enter COMMIT (or exit the database).
You can undo all changes in the transaction by entering ROLLBACK.

When transaction processing is on and AUTOCOMMIT is also on, each command that is executed
successfully is treated as a transaction and made permanent. ROLLBACK has no effect when
AUTOCOMMIT is on.

Only the first user to connect to a closed database can enter the TRANSACT setting for that database.
Enter the command before connecting to the database. If anyone else already has the database open,
R:BASE displays a message telling you that your TRANSACT setting must match that of the open
database before you can connect. Transaction processing is either on for all users or off for all users in a
given database.

R:BASE Database Commands 333

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.6.97 UINOTIF

Operating Condition

Syntax: SET UINOTIF ON/OFF

Default: ON

Controls the automatic user interface updates at the Database Explorer to refresh the list of tables,
views, stored procedures, forms, reports, and labels.

Setting UINOTIF to OFF within an application will improve the performance.

6.15.6.98 USER

Use the SET USER command to create users, change the password for a user, or run R:BASE with a user
identifier and password, if one has been set up.

Options

FOR userid
Specifies a user identifier. For a value with spaces, the userid must be enclosed in quotes.

owner
Specifies the database owner name.

password
Creates a new password. Enter NONE to remove an existing password.

PASSWORD
Specifies or changes the password for the current user identifier.

TO password
Creates a new password. Enter NONE to remove an existing password.

userid
Specifies a user identifier. For a value with spaces, the userid must be enclosed in quotes.

About the SET USER Command

Passwords are specific to user identifiers and databases and are not required by R:BASE; however, once
a password is set up, R:BASE prompts for the user's password every time the user connects to the
database or issues a user identifier. User identifiers have a maximum length of 36 characters. Passwords
have a minimum length of three characters and maximum length of 36 characters.

To run R:BASE with your user identifier then connect to the database, enter the following command line:

SET USER <Userid>

You can also enter the following command line to run R:BASE with your user identifier:

Oterro 11 Help Manual334

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET USER

R:BASE displays a dialog box and prompts you for your user identifier.

When a password has been set up for a user identifier, R:BASE prompts for the password after the
correct user identifier has been entered.

Note: When a user enters a user identifier or password in a dialog box, the user identifier is not
displayed on screen.
To add or change a password, connect to the database with the user identifier and enter the following
command line:

SET USER PASSWORD

R:BASE prompts for the user's identifier, then prompts for the password. A user can cancel a password
by entering NONE.

If the database owner is the current user, the database owner can assign him/herself a password using
the SET USER PASSWORD command; however, if the database owner forgets the assigned password, the
password cannot be found or changed.

As the database owner, to change a user's password, connect to the database and enter the following
command line:

SET USER PASSWORD FOR <Userid> TO <Password>

Enter your current password when R:BASE prompts you for it, then when R:BASE prompts you for a new
password, enter NONE.

Note: A user's password is revoked when the database owner revokes all the user's privileges.

6.15.6.99 UTF8

Operating Condition

Syntax: SET UTF8 ON/OFF

Default: OFF

Controls the ability to use Unicode characters for string functions in applications and environments which
will use higher character sets.

6.15.6.100VERIFY

Operating Condition

Syntax: SET VERIFY COLUMN/ROW

Default: COLUMN

Mode: Multi-user

SET VERIFY, used in the multi-user environment, specifies the level of concurrency control as a row or a
column within a row.

SET VERIFY allows you to specify whether R:BASE concurrency control will apply to individual columns
within a row or to all columns in the row. When the level of concurrency control is set to COLUMN,
R:BASE checks only the columns you change while you are editing. When the level of concurrency
control is set to ROW, if you change data in any column, R:BASE checks every column in the row.

R:BASE Database Commands 335

Copyright © 1982-2024 R:BASE Technologies, Inc.

R:BASE concurrency control operates automatically when you are using a form in multi-user
environments. Concurrency control includes autorefresh and verification. When you refresh or try to
save a row, R:BASE checks whether data has been changed by another user and alerts you if it has
changed. This prevents simultaneous changes that could corrupt the integrity of your data. The SET
VERIFY command affects the operation of both autorefresh and verification when you are using a form.

When concurrency control is set to COLUMN, R:BASE looks for conflicts, those instances when two users
have both modified the same column. When R:BASE detects a conflict in at least one field:

· R:BASE displays all of the other user's changes in the appropriate fields.
· Where there is no conflict, changes you made continue to be displayed.
· R:BASE displays a message informing you that data has changed.

When concurrency control is set to ROW, R:BASE looks for a change to any column in the whole row,
whether it is a conflict or not. When R:BASE detects a change:

· R:BASE displays all of the other user's changes in the appropriate fields.
· Where there is no conflict, changes you made to the data are discarded.
· R:BASE displays a message informing you that data has changed.

Whether concurrency control is set to COLUMN or ROW, you can review the changes and then continue
editing the data in the form. After autorefresh, R:BASE prompts you to press any key to continue editing.
After verification, you can either move on to your next task or edit the data again. If you choose to move
on when the level of concurrency control is set to COLUMN, you will be discarding any changes you made
that are still displayed. R:BASE prompts you to press [Esc] if you want to move on, or to press [Enter] if
you want to edit the displayed data.

When you edit data in a form, concurrency control is always enforced.

When you enter data in a form, concurrency control is enforced only when you are entering values in
fields defined with a same-table look-up, or when you return to a row in a region that you had entered
previously.

The first command line in the following example sets the level of concurrency control to check for
changes in the entire row. The second command line starts an editing session using the form named
custform.

SET VERIFY ROW
EDIT USING custform

6.15.6.101WAIT

Operating Condition

Syntax: SET WAIT value

Range: 0 to 16383 seconds

Default: 4

Mode: Multi-user

SET WAIT sets the minimum number of seconds to retry the last requested resource (a table or
database) before halting execution. Rather than aborting execution, SET WAIT allows you to set a length
of time for R:BASE to keep trying to access a resource. A message is displayed showing the approximate
percentage of wait time remaining.

If you do not run a SET WAIT command, R:BASE automatically retries the locked resource for
approximately four seconds before issuing a retry message.

For commands that wait for resources, the precise period of the wait is at least as long as the time
specified. On some computers, processing requirements may extend the length of the wait to longer than
one second for each second designated.

Oterro 11 Help Manual336

Copyright © 1982-2024 R:BASE Technologies, Inc.

When you enter a command from the R> Prompt and the waiting period expires, R:BASE displays a
message prompting you to retry or ignore the command. When the command runs as part of a command
file, however, and the waiting period expires, R:BASE ignores the command and goes on to the next
command.

The following command tells R:BASE to retry the last requested resource for approximately 20 seconds.

SET WAIT 20

You can also adjust the interval in which R:BASE tries the command during the SET WAIT period.

For more information, see INTERVAL.

6.15.6.102WALKMENU

Operating Condition

Syntax: SET WALKMENU ON/OFF

Default: OFF

Allows shortcut access to menus

SET WALKMENU is a menu shortcut function allowing the user to access menu selections by typing the
beginning characters (up to when a match is made) of their names. Pressing any navigational keys (such
as [Home] or [Page Up]) clears the buffer containing the keystrokes entered by the user while traversing
the menu list. Any keystrokes not resulting in a match are not stored in the buffer, causing a beep.

6.15.6.103WHILEOPT

Operating Condition

Syntax: SET WHILEOPT ON/OFF

Default: ON

SET WHILEOPT improves the optimization and processing of WHILE ...ENDWHILE loops within applications
by pre-compiling variables used within the WHILE loop. Follow these guidelines:

· Don't clear your WHILE variable(s).
· Don't define variables within your WHILE loop, only outside the loop; values can change within the

loop.
· Adhere to the syntax rules for the SWITCH statement by making sure that the argument for the

SWITCH statement is an expression.
· If you issue multiple SET VARIABLE commands on a single command line, those variables will not

be optimized. If you want to increase the speed for that loop, put those SET VARIABLE commands
on separate lines.

The WHILEOPT setting must be changed in a command file. The setting cannot be saved to the
configuration file.

6.15.6.104WIDTH

Operating Condition

Syntax: SET WIDTH value

Range: 40 to 5000 characters

Default: 79

SET WIDTH controls the width of a data line that R:BASE directs to the printer, screen, or file when using
the BACKUP, COMPUTE, CROSSTAB, DISPLAY, SELECT, TYPE, UNLOAD, or WRITE commands. Do not set

R:BASE Database Commands 337

Copyright © 1982-2024 R:BASE Technologies, Inc.

the width to a number greater than the number of characters your printer can fit on a line; a typical page
and computer screen display 80 characters. WIDTH does not affect report generation; each report
defines the width of a data line.

Note: The 5000-character maximum does not apply to the TYPE or DISPLAY commands, which continue
to have 256-character width limits.

6.15.6.105WINAUTH

Operating Condition

Syntax: SET WINAUTH ON/OFF

Default: OFF

SET WINAUTH controls if R:BASE will automatically authenticate database connections through Integrated
Windows Authentication (IWA) with Windows Active Directory. When WINAUTH is set ON, the security
features of the Windows clients and servers allows access to an R:BASE database when the Windows
user name and password matches a defined R:BASE database user name and password. The current
Windows user information on the client computer is supplied to R:BASE and does not prompt user for
additional user name and password.

In order to use this feature, R:BASE database administrators must create an owner and user privileges
for the database files to take full advantage of IWA support.

In addition to creating the database user privileges, the operating condition WINAUTH must be set to ON
when prior to users connecting to the database. WINAUTH can be set within the R:BASE configuration file,
or defined within an application startup file.

Requirements:

· WINAUTH must be set ON before connecting to the database.

· Database must contain an owner and user privileges that match Windows network accounts.

Notes:

· R:BASE will accept user names that contain spaces.

· Passwords are case-sensitive.

· If the authentication exchange initially fails to identify the user, R:BASE will prompt the user for a
user name and password.

· A new CVAL Function (CVAL('WINAUTH')) has been established to check if WINAUTH is on.

· When an R:BASE user successfully connects to the database via IWA, the current R:BASE USER
identifier is set to the current Windows user name.

6.15.6.106WINBEEP

Operating Condition

Syntax: SET WINBEEP ON/OFF

Default: OFF

Allows R:BASE to access a subset of the Sound Events in Windows. WINBEEP command will use the
current system sound schema.

When set to OFF R:BASE will use a standard Windows sound for all errors and the BEEP command. When
set to ON certain sounds, as set in the Windows Control Panel, will be used instead depending on which
sound type is used. Below is a table of Types and their corresponding sound event. You must set the
actual sounds used in the Windows Sounds Control Panel Applet. You will also need to ensure that your

Oterro 11 Help Manual338

Copyright © 1982-2024 R:BASE Technologies, Inc.

speakers are Un-Muted and working properly. In either case, WINBEEP ON or WINBEEP OFF, if you have
the "No Sounds" scheme selected in your Sounds Control Panel you will not hear any beeps from R:BASE
for Windows.

Sound Type Sound Event

0 SYSTEM

1 SYSTEMSTART

2 SYSTEMEXIT

3 SYSTEMHAND

4 SYSTEMASTERISK

5 SYSTEMQUESTION

6 SYSTEMEXCLAMATION

7 SYSTEMWELCOME

8 SYSTEMDEFAULT

Example

SET CAPTION ' '
SET VAR VRows INTEGER = 0
SET VAR VMsg TEXT = NULL
SELECT COUNT(*) INTO VRows INDIC IVRows FROM TableName
IF VRows = 0 THEN
 CLS
 SET WINBEEP ON 2
 BEEP
 PAUSE 2 USING 'No Record(s) on File!' AT CENTER CENTER
 SET WINBEEP OFF
 GOTO Done
ELSE
 CLS
 SET WINBEEP ON 1
 BEEP
 SET VAR VMsg = ((CTXT(.VRows)) & 'Record(s) on File!')
 PAUSE 2 USING .VMsg AT CENTER CENTER
 SET WINBEEP OFF
 GOTO Done
ENDIF

LABEL Done
 CLS
 CLEAR ALL VAR

6.15.6.107WRAP

Operating Condition

Syntax: SET WRAP ON/OFF

Default: ON

Text in fields that have NOTE and TEXT data types will wrap in forms and FILLIN windows, variables, and
reports.

6.15.6.108WRITECHK

Operating Condition

Syntax: SET WRITECHK ON/OFF

Default: OFF

R:BASE Database Commands 339

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET WRITECHK ON tells R:BASE to verify every write to disk.

6.15.6.109ZERO

Operating Condition

Syntax: SET ZERO ON/OFF

Default: OFF

SET ZERO allows a null to be treated as a zero in a mathematical expression involving INTEGER,
NUMERIC, REAL, DOUBLE, CURRENCY, DATE, DATETIME, or TIME data types. With ZERO set on, R:BASE
returns a negative number when you subtract an integer from a null. With ZERO set off, the same
computation results in a null. R:BASE stores the setting with the database.

6.15.6.110ZOOMEDIT

Operating Condition (R:BASE for DOS only)

Syntax: SET ZOOMEDIT ON/OFF

Default: OFF

Toggles the field expansion method.

Set ZOOMEDIT to on if you want to open RBEdit, the R:BASE text editor, when you zoom in on a NOTE
filed in a form. When ZOOMEDIT is off, a dialog box that wraps text is opened instead.

6.15.7 SET STATICVAR

Use the SET STATICVAR command to define or redefine a static variable value and/or data type.

Options

colname
Specifies a column name. The column name is limited to 128 characters. In a command, you can enter
#c, where #c is the column number in the table's column order. In an SQL command, a column name
can be preceded by a table or correlation name and a period (tblname.colname).

datatype
Specifies an R:BASE data type for the static variable. See Data Types.

(expression)
Determines a value using a text or arithmetic formula. The expression can include constant values,
functions, or system variables such as #date, #time, and #pi.

IN tblview
Specifies a table or view.

Oterro 11 Help Manual340

Copyright © 1982-2024 R:BASE Technologies, Inc.

NULL
Sets the static variable equal to NULL.

value
Sets the static variable equal to a specified value. A value is a constant amount, text string, date, or
time, or the value assigned to varname.

varname
Specifies a static variable name, which must be unique among both the static variable names within the
database and the global variable names for the R:BASE session. The static variable name is limited to
128 characters.

&varname
Sets the first variable equal to the exact contents of a second variable; the ampersand tells R:BASE to
evaluate the contents of the variable first.

For example, if varname is the text string (2+3), then &varname is the value 5.

.varname
Sets the first variable equal to the exact contents of a second variable.

For example, if varname is the text string (2+3), then .varname is (2+3).

WHERE clause
Limits rows of data. For more information, see the WHERE Clause.

About the SET STATICVAR Command

The SET STATICVAR command defines static variables, which are part of a connected database. Once
defined, the variables are created every time the database is connected. When a database is
disconnected, the static variables associated with the database are cleared. Static variable can be used
just like normal variables with SET VARIABLE commands and in expressions. The basic syntax is just like
the SET VARIABLE command except you use the word STATICVAR instead of VARIABLE (or VAR).

The UNLOAD command will create SET STATICVAR commands for the static variables defined for the
connected database.

To clear one or more static variables use the CLEAR command. CLEAR ALL VAR will clear all variables
(global and static), but immediately recreates the static variables, just like R:BASE does with system
variables.

Important: It is recommended to define each static variable as a separate entry in the database.
Defining multiple static variables with a single SET STATICVAR command should be avoided, as the
multiple variables are defined as a group and are retained as a single database entry. If the variable
group are always used as a set, then there will not be a problem. If the intent is to store each static
variable as a separate item, each variable must be defined with a separate SET STATICVAR command.

The benefits of static variables include:

· Database unloads will no longer trip over missing global variables
· Users would not have to remember to define required variables used in views
· Distributed applications could contain static variables specific to each customer

Static variable have the following restrictions:

· The variable name is not an R:BASE reserved word.
· The variable name begins with a letter, contains only letters, numbers, and the following special

characters: #, $, _ , and %.
· The variable definitions are limited to 512 characters.

It is good programming practice to always define the data type for the variable before assigning it a
value. When defining an variable as a text string, enclose the text string in single quote marks (or the
current QUOTES character); otherwise, it might be interpreted as an arithmetic expression.

R:BASE Database Commands 341

Copyright © 1982-2024 R:BASE Technologies, Inc.

Assigning a Data Type to a Static Variable

The datatype option refers to one of the valid R:BASE data types. You can define a static variable to
have a NOTE data type, but R:BASE treats it as TEXT for most uses. You can also specify the precision
and scale for NUMERIC data types.

The datatype option creates a static variable, determines its data type, and sets its value to null. Use this
option to define a static variable's data type before assigning a value to the variable.

For an existing static variable, you can use the datatype option to change the data type, but it is
recommended to use one of the conversion functions. If you change the data type, the new data type
must be compatible with the current variable value; if the variable is not compatible, R:BASE displays an
error message and leaves the value and data type unchanged. If you change a variable with a TEXT data
type to a non-compatible data type, R:BASE changes the value to null.

Assigning a Value to a Static Variable

The value option is a data value or constant, such as 10, TOM, 3.1416, or $17.23. If the static variable
already exists, any new value must have a data type that is compatible with that variable. If the static
variable does not exist, R:BASE defines the variable's data type. You can also define the variable's data
type in this command before assigning it a value.

Setting the Value of a Static Variable to Another Variable

When you set a static variable to the value of another variable, the second variable must be a dot
variable (.) or an ampersand (&) variable.

When you precede a variable with a dot (.), R:BASE uses the value stored in the variable as if it were a
constant.

When you precede a variable with an ampersand (&), R:BASE first evaluates the value contained in the
ampersand variable. For example, consider the following uses of the command:

SET STATICVAR vM TEXT = 'Multi'
SET STATICVAR vP TEXT = 'Purpose'
SET STATICVAR vMP TEXT = '(vM + vP)'
SET STATICVAR vMPValue = .vMP
SET STATICVAR vMPCompute = &vMP

When the third command line runs, the variable vMP will contain (vM + vP). When the forth command line
runs, variable vMPValue will also contain (vM + vP) because the dot tells R:BASE to set the value as an
exact match to the contents of variable vMP. When the fifth command line runs, variable vMPCompute
will contain MultiPurpose (the concatenation of Multi and Purpose) because the ampersand tells R:BASE to
compute the contents of variable vMP.

As shown in the example above, an ampersand variable can contain one command or part of one
command, such as an expression. The first variable is set to the computed value of the ampersand
variable. Below is an example:

1. SET STATICVAR v1 TEXT
2. SET STATICVAR v2 INTEGER
3. SET STATICVAR v1 = '((50 + 100)/ 2)'
4. SET STATICVAR v2 = &v1

1. Sets the data type for the variable v1 to TEXT.
2. Sets the data type for the variable v2 to INTEGER.
3. Sets variable v1 to a text value that is a valid arithmetic expression.
4. Sets variable v2 to &v1.

R:BASE computes the expression contained in v1 and assigns the calculated value to v2. When R:BASE
sees a variable name preceded by ampersand, it treats the contents of the variable as if it was entered
from the keyboard.

Oterro 11 Help Manual342

Copyright © 1982-2024 R:BASE Technologies, Inc.

Setting a Static Variable to an Expression

An (expression) can be either an arithmetic operation that combines two or more items in an arithmetic
computation, or a string expression that concatenates two or more text items, or uses a TEXT function.
The items can be values or the values contained in variables.

If you do not predefine the data type of a static variable, the original data type of each item determines
the data type of the result. For example, if you add a variable that has an INTEGER data type to a
variable that has a REAL data type, the resulting variable has a REAL data type unless you define the
result to be an INTEGER data type.

If any item in an arithmetic expression is null, the result will be null unless you specify SET ZERO ON.

Assigning Column Values in a Table or View

If you specify a table or view in a SET STATICVAR command, you can include an optional WHERE clause
to indicate which row to use. If you do not include the WHERE clause, R:BASE uses the value for the
column in the first row.

You must have SELECT privileges on the table to use this form of SET STATICVAR.

Examples

Defines the vMessage static variable to have a TEXT data type.

SET STATICVAR vMessage TEXT

Defines the vReal static variable to have a REAL data type, and assigns it the value 100.9.

SET STATICVAR vReal REAL = 100.9

Defines the vNumer static variable to have a NUMERIC data type having a precision of 9 and scale of 3.

SET STATICVAR vNumer NUMERIC (9,3)

Assigns the integer value 14322 to the vNum static variable.

SET STATICVAR vNum = 14322

Assigns the value of the above vNum variable to the vTwo static variable.

SET STATICVAR vTwo =.vNum

Assigns the value 03/25/2022 to the vLtrDate static variable.

SET STATICVAR vLtrDate = ('12/25/2021' + 90)

Assigns the vCompanyName static variable from the row in the LicenseInformation table where the
LicenseNumber value is equal to BM-68215.

SET STATICVAR vCompanyName TEXT = CompanyName IN LicenseInformation WHERE
LicenseNumber = 'BM-68215'

R:BASE Database Commands 343

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.15.8 SET VARIABLE

Use the SET VARIABLE command to define or redefine a variable value and/or data type.

Options

,
Indicates that this part of the command is repeatable.

colname
Specifies a column name. The column name is limited to 128 characters.

In a command, you can enter #c, where #c is the column number shown when the columns are listed
with the LIST TABLES command. In an SQL command, a column name can be preceded by a table or
correlation name and a period (tblname.colname).

datatype
Specifies an R:BASE data type for the variable. See Data Types.

(expression)
Determines a value using a text or arithmetic formula. The expression can include other columns from
the table, constant values, functions, or system variables such as #date, #time, and #pi.

IN tblview
Specifies a table or view.

NULL
Sets the variable equal to NULL.

value
Sets the variable equal to a specified value. A value is a constant amount, text string, date, or time, or
the value assigned to varname.

varname
Specifies a variable name, which must be unique among the variable names within the database. The
variable name is limited to 128 characters.

&varname
Sets the first variable equal to the exact contents of a second variable; the ampersand tells R:BASE to
evaluate the contents of the variable first.

For example, if varname is the text string (2+3), then &varname is the value 5.

.varname
Sets the first variable equal to the exact contents of a second variable.

For example, if varname is the text string (2+3), then .varname is (2+3).

Oterro 11 Help Manual344

Copyright © 1982-2024 R:BASE Technologies, Inc.

WHERE clause
Limits rows of data. For more information, see the WHERE Clause.

About the SET VARIABLE Command

Variables identify a changeable value. R:BASE provides three kinds of variables: global, error, and
system. The SET VARIABLE command defines global variables, which are temporary variables that exist
within R:BASE, but are not part of any database. Global variables remain in memory until you clear them
or exit from R:BASE. R:BASE sets error and system variables internally.

Global variables have several uses: they can provide a temporary value in a command, hold the result of
a calculation, act as a counter, or capture keyboard entries for use with menus or screens. The most
common method of defining variables is to assign the variable value with the SET VARIABLE command.

Variable names have the following restrictions:

· The variable name is not an R:BASE reserved word.
· The variable name begins with a letter, contains only letters, numbers, and the following special

characters: #, $, _ , and %.

It is good programming practice to always define the data type for the variable before assigning it a
value, unless you are setting a variable to a column value or using the variable in the CHOOSE
command.

When defining an variable as a text string, enclose the text string in single quote marks (or the current
QUOTES character); otherwise, it might be interpreted as an arithmetic expression.

Assigning a Data Type to a Variable

The datatype option refers to one of the valid R:BASE data types. You can define a variable to have a
NOTE data type, but R:BASE treats it as TEXT for most uses. You can also specify the precision and scale
for NUMERIC data types.

The datatype option creates a variable, determines its data type, and sets its value to null. Use this
option to define a variable's data type before assigning a value to the variable. To set multiple variables
in the same command, separate the variables by a comma or the current delimiter.

For an existing variable, you can use the datatype option to change the data type, but it is recommended
to use one of the conversion functions. If you change the data type, the new data type must be
compatible with the current variable value; if the variable is not compatible, R:BASE displays an error
message and leaves the value and data type unchanged. If you change a variable with a TEXT data type
to a non-compatible data type, R:BASE changes the value to null.

Assigning a Value to a Variable

The value option is a data value or constant, such as 10, TOM, 3.1416, or $17.23. If the variable already
exists, any new value must have a data type that is compatible with that variable. If the variable does
not exist, R:BASE defines the variable's data type.

You can also define the variable's data type in this command before assigning it a value.

Setting the Value of a Variable to Another Variable

When you set the variable to the value of another variable, the second variable must be a dot variable
(.) or an ampersand (&) variable.

When you precede a variable with a dot (.), R:BASE uses the value stored in the variable as if it were a
constant.

When you precede a variable with an ampersand (&), R:BASE first evaluates the value contained in the
ampersand variable. For example, consider the following uses of the command:

SET VARIABLE vM TEXT = 'Multi'

R:BASE Database Commands 345

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET VARIABLE vP TEXT = 'Purpose'
SET VARIABLE vMP TEXT = '(vM + vP)'
SET VARIABLE vMPValue = .vMP
SET VARIABLE vMPCompute = &vMP

When the third command line runs, the variable vMP will contain (vM + vP). When the forth command line
runs, variable vMPValue will also contain (vM + vP) because the dot tells R:BASE to set the value as an
exact match to the contents of variable vMP. When the fifth command line runs, variable vMPCompute
will contain MultiPurpose (the concatenation of Multi and Purpose) because the ampersand tells R:BASE to
compute the contents of variable vMP.

As shown in the example above, an ampersand variable can contain one command or part of one
command, such as an expression. The first variable is set to the computed value of the ampersand
variable. Below is an example:

1. SET VARIABLE v1 TEXT
2. SET VARIABLE v2 INTEGER
3. SET VARIABLE v1 = '((50 + 100)/ 2)'
4. SET VARIABLE v2 = &v1

· Sets the data types for variables v1 and v2 to TEXT and INTEGER, respectively.
· Sets variable v1 to a text value that is a valid arithmetic expression.
· Sets variable v2 to &v1.

R:BASE computes the expression contained in v1 and assigns the calculated value to v2. When R:BASE
sees a variable name preceded by ampersand, it treats the contents of the variable as if it was entered
from the keyboard.

Setting a Variable to an Expression

An (expression) can be either an arithmetic operation that combines two or more items in an arithmetic
computation, or a string expression that concatenates two or more text items, or uses a TEXT function.
The items can be values or the values contained in variables.

If you do not predefine the data type of a variable, the original data type of each item determines the
data type of the result. For example, if you add a variable that has an INTEGER data type to a variable
that has a REAL data type, the resulting variable has a REAL data type unless you define the result to be
an INTEGER data type.

If any item in an arithmetic expression is null, the result will be null unless you specify SET ZERO ON.

Assigning Column Values in a Table or View

If you specify a table or view in a SET VARIABLE command, you can include an optional WHERE clause to
indicate which row to use. If you do not include the WHERE clause, R:BASE uses the value for the column
in the first row.

You must have SELECT privileges on the table to use this form of SET VARIABLE.

In instances where your building a dynamic SET VARIABLE command based on previous options made,
you must use an ampersand variable in place of a column or table name, for example:

CHOOSE vtab FROM #TABLES
CHOOSE vcol FROM #COLUMNS IN &vtab
SET VARIABLE vnewpr = &vcol IN &vtab

Enter the table and column names into the vtab and vcol variables first. You can do this by using the
CHOOSE #TABLES and CHOOSE #COLUMNS commands, as shown in the above example. The
CHOOSE command displays a menu of tables or columns from which to choose. By using ampersand
variables to hold the table and column names, you can use the same SET VARIABLE command to get
values from different columns in a table or from different tables. Each time SET VARIABLE requests a
column, it retrieves information from the first row in the table stored in &vtab.

Oterro 11 Help Manual346

Copyright © 1982-2024 R:BASE Technologies, Inc.

NOTE: You can define multiple variables with a single SET VARIABLE command when you set the value
of the variables to the value of columns in a table. However, when capturing column data into variables,
it is better to use the SELECT command; specifically, SELECT INTO. SELECT INTO is the SQL compliant
command when capturing table data into variables.

Examples

The following table provides examples of the SET VARIABLE command.

SET VARIABLE Examples

Examples Description

SET VARIABLE vtext TEXT Defines the vtext variable to have a TEXT data type.

SET VARIABLE vreal REAL = 100.9 Defines vreal variable to have a REAL data type, and
assigns it the value 100.9.

SET VARIABLE vnumer NUMERIC (9,3) Defines the vnumer variable to have a NUMERIC data
type having a precision of 9 and scale of 3.

SET VARIABLE vnum = 14322 Assigns the integer value 14322 to the vnum variable.

SET VARIABLE VTWO =.VNUM Assigns the value of the vnum variable to the vtwo
variable.

SET VARIABLE V3 = &V4 Assigns the computed value of v4 to the v3 variable.

SET VARIABLE vltdate = ('12/25/93' + 90) Assigns the value 03/25/94 to the vltdate variable.

SET VARIABLE vfulln = (.VFIRSTN & .VLASTN) Assigns to the vfulln variable the value of the full name
formed by concatenating the values in the vfirstn and
vlastn variables The ampersand inserts a space between
the two values.

SET VARIABLE v1 = col1, v2 = col2, v3= col3
IN tbl1 WHERE col1 = 'Smith'
OR SQL compliant variation:
SELECT col1, col2, col3 INTO v1 INDI iv1, v2
INDI iv2, v3 INDI iv3 FROM tbl1 WHERE col1
= 'Smith'
 See SELECT INTO

Assigns Smith to the variable v1; the value of column
col2 to v2; and the value of column col3 in tbl1, from
the row where col1 contains Smith, to variable v3.

6.15.9 SWITCH/ENDSW

Use the SWITCH...ENDSW command in a program to define a block of possible actions to take depending
on the value of an expression. The SWITCH and CASE statements help control complex conditional and
branching operations.

Options

BREAK
Ends SWITCH processing; use this option within each CASE comparison and in the DEFAULT block.

case-block
Contains one or more commands to execute if the CASE value matches the SWITCH expression.

R:BASE Database Commands 347

Copyright © 1982-2024 R:BASE Technologies, Inc.

CASE value
Compares the SWITCH value to another value. If the values match, the commands following CASE are
executed; otherwise, the next CASE comparison is checked.

DEFAULT
Provides commands to execute if no CASE comparisons are true.

default-block
Contains one or more commands to execute if no CASE comparisons are true.

(expression)
Determines a value using a text or arithmetic formula. The expression can include other columns from
the table, constant values, functions, or system variables such as #date, #time, and #pi.

About the SWITCH...ENDSW Command Structure

The SWITCH statement is a control statement that handles multiple selections by passing control to one
of the CASE statements within its body whose value matches the initial expression. The switch statement
transfers control to a statement within its body. The syntax diagram shows the entire SWITCH...ENDSW,
including the SWITCH value, CASE blocks, and the DEFAULT block.

SWITCH ([expression])
CASE [value]

[case-block]
BREAK

DEFAULT
[default-block]
BREAK

ENDSW

The SWITCH statement allows a developer to control the order in which the code is executed because it
is a conditional statement. In addition to handling multiple selections by passing control to one of the
CASE statements within its body, the SWITCH provides an efficient mechanism for controlling, tracing,
and debugging output at run time using external settings. Practically, you may define a common
command file template/Custom Form Action and then use the R:BASE percent variables (%) to pass all
required parameters for SWITCH and CASE values. A nested IF...ENDIF can be rewritten as one SWITCH
statement.

The SWITCH Expression

SWITCH defines the expression to be compared. You can have multiple comparisons, so ENDSW defines
the end of the comparisons. The SWITCH expression result must be either an INTEGER or a TEXT data
type. The SWITCH expression can be a calculation, constant value, or variable. Any length of text can be
compared, but only the first 30 characters are checked in each CASE block.

CASE Blocks

The SWITCH statement can include any number of CASE instances, but no two case statements can have
the same value. A CASE block consists of three parts: the CASE comparison, the commands following
each comparison, and the BREAK statement.

CASE comparisons must be the same data type as the SWITCH expression result - either INTEGER or
TEXT. A CASE value cannot be an expression, but must be a constant value or a variable. You can have
multiple CASE comparisons to run a single set of commands. For an example of how to use multiple
comparisons, see "Examples" below.

The commands following a CASE comparison can include any R:BASE command, including a nested
SWITCH…ENDSW structure. You can nest as many SWITCH…ENDSW structures as memory allows.

Use a BREAK statement as the last command in a CASE block to exit from the SWITCH…ENDSW
structure. The BREAK command stops R:BASE from checking any additional CASE comparisons.
Otherwise, R:BASE will execute every CASE statement even if only one condition is met.

The DEFAULT Block

Oterro 11 Help Manual348

Copyright © 1982-2024 R:BASE Technologies, Inc.

Use the DEFAULT block to provide a set of commands to be executed if none of the CASE comparisons
matches the expression. You can have only one DEFAULT block for each SWITCH…ENDSW structure. The
DEFAULT block should be located in the last statement block in a SWITCH...ENDSW structure. If a CASE
block follows a DEFAULT block, R:BASE generates a warning.

Example

The following SWITCH...ENDSW structure uses a date entered in a DIALOG command in the expression.
The TDWK function calculates day of the week as text from the date stored in vday.

DIALOG 'Enter a date:' vday vendkey 1
SWITCH (TDWK(.vday))
 CASE 'Saturday'
 CASE 'Sunday'
 WRITE 'This is a weekend day.'
 SHOW VARIABLE vday
 BREAK
 DEFAULT
 WRITE 'This is a weekday.'
 SHOW VARIABLE vday
 BREAK
ENDSW

If you entered 12/17/94 when prompted for the date, the first CASE comparison would check whether
the day of the week is the word Saturday. Because the word is Saturday, R:BASE would display the
message below. The BREAK command prevents R:BASE from processing the rest of the commands in the
SWITCH...ENDSW structure.

This is a weekend day.
12/17/94

If the date entered is not Saturday or Sunday - for example, 12/22/94 - the information in the DEFAULT
block would display the following.

This is a weekday.
12/22/94

6.16 T

6.16.1 TURBO

Use the TURBO command to convert your database files to R:BASE 11 database files.

Options

dbname
Specifies a database name

V9
Specifies that you are converting a R:BASE Turbo V-8 database to R:BASE 11.

IDENTIFIED BY

R:BASE Database Commands 349

Copyright © 1982-2024 R:BASE Technologies, Inc.

Specifies the user identifier. If left blank, R:BASE prompts you for the user identifier. R:BASE does not
display it as you enter the text.

OWNER
Optional; specifies the database owner name. If omitted and an OWNER name exists, you will be
prompted.

Notes:

· If you are converting a RB1-RB4 database file structure to RX1-RX4 for the first time, you do not
need to specify the "V9" parameter.

· The TURBO command will convert database files as far back as version 6.5.

For more on database conversions, please refer to the Database Conversion Guide PDF document
located within the R:BASE program directory).

6.17 U

6.17.1 UNLOAD

Use the UNLOAD command to copy the data of a database table to a specified output device.

Options

AS ASCII
Unloads data in ASCII-delimited format. Use only with the UNLOAD DATA command.

AS CSV
Unloads data in a minimally quoted comma separated format. Each field will be separated by the current
DELIMIT character (usually the comma). Fields that contain the current DELIMIT character will be
enclosed in the current QUOTES character.

DATA
Unloads the data.

DELIMIT=value
Specifies a custom delimiter value for the ASCII or CSV unload formats. The value can be a character or
the CHAR function.

ORDER BY clause
Sorts rows of data. For more information, see ORDER BY. Unloads the table/view definition structure. The
output contains only the SQL command necessary to create the table/view.

QUOTES=value
Specifies a custom quote character value for the ASCII or CSV unload formats. The value can be a
character or the CHAR function.

tblname
Specifies the table name to unload the data.

USING collist
Specifies the column(s) to use with the command, where text may also be inserted.

WHERE clause

Oterro 11 Help Manual350

Copyright © 1982-2024 R:BASE Technologies, Inc.

Limits rows of data. For more information, see WHERE.

About the UNLOAD Command

Use UNLOAD to transfer tables or views from one database to another, or to back up a database. You
can also use UNLOAD to free up space while using a temporary table.

The UNLOAD command creates a file with a .LOB extension for binary large objects, and the originating
file that you specify for the data. Your originating file can NOT have a .LOB file extension.

Transferring Tables and Views

UNLOAD does not change the data or structure of the original database. UNLOAD DATA with the AS
ASCII or AS CSV option unloads computed column values as well as non-computed columns.

If the UNLOAD AS CSV syntax has been used, you can use the LOAD AS CSV command to restore the
data.

Backing up a Database

R:BASE unloads data in ASCII delimited format: values are separated by the current delimiter and all
text strings are enclosed in quotation marks. UNLOAD creates a file containing commands that set special
characters, such as commas and quotation marks. The setting of the SET WIDTH condition effects the
width of data lines in the unloaded file

If the database has columns defined as binary or text large objects, then UNLOAD creates two files, one
file containing the R:BASE commands, and a second file (with a .LOB extension) containing the large
object data. Both files are needed to transfer the information back into an R:BASE database. Your
originating file can NOT have a .LOB file extension.

Unloading Temporary Tables

Use the UNLOAD tblname command to backup individual temporary tables created when STATICDB is set
on-which activates a read-only schema mode. When UNLOAD is used to backup temporary tables, it
generates a SET STATICDB OFF command to be executed prior to the CREATE SCHEMA command.

Examples

Example 01:

The following command lines unload only the data from the product table to a file named MYFILE.DBS.
The data is in ASCII delimited format. The OUTPUT SCREEN command redirects the output back to the
screen and closes the file.

OUTPUT myfile.dbs
UNLOAD DATA FOR product AS ASCII
OUTPUT SCREEN

Example 02:

In the example below the a file will be created that contains Comma Separated Values with no headings
and no page breaks.

SET HEADINGS OFF
SET LINES 0
SET WIDTH 200
OUTPUT myfile.csv
UNLOAD DATA FOR Employees AS CSV
OUTPUT SCREEN

The commands above might create the file below. Notice that Jane Dough has Quotes surrounding her
address. This is because the text contains an embedded comma.

R:BASE Database Commands 351

Copyright © 1982-2024 R:BASE Technologies, Inc.

Robert,Smith,123 Main St,Denver,CO,Support
Jane,Dough,'98 Folk St, Apt 1',Pittsburgh,PA,Sales
Matt,Follows,14 Arrowhead Ln,Portsmouth,RI,Services

Example 03:
The following unloads the first name, last name, and the preceded text "Contact Name" within the ASCII
output

UNLOAD DATA FOR Contact USING 'Contact Name:',ContFName,ContLName AS ASCII

6.17.2 UPDATE

Use the UPDATE command to change the data in one or more columns in a table or a view.

Options
,
Indicates that this part of the command is repeatable.

(expression)
Determines a value using a text or arithmetic formula. The expression can include other columns from
the table, constant values, functions, or system variables such as #date, #time, and #pi.

FROM tbllist
Specifies a list of tables from which data can be retrieved and updated.

NULL
Sets the values in the column equal to null.

SET colname
Specifies the column to update.

table
Specifies a table.

tblview
Specifies a table or view. If no table or view name is included, columns will be updated in all tables
containing the specified columns, according to the conditions of the WHERE clause.

value
Specifies a value to enter in the specified column.

.varname
Specifies a global variable that provides a value for a column.

WHERE clause

Oterro 11 Help Manual352

Copyright © 1982-2024 R:BASE Technologies, Inc.

Limits rows of data. For more information, see WHERE.

WHERE CURRENT OF cursor
Specifies a cursor that refers to a specific row to be affected by the UPDATE command. With this option,
you must specify tblview.

About the UPDATE Command

The UPDATE command is useful for adjusting values in columns that require uniform changes.

The UPDATE command only modifies data in columns in one table or view. You can also update a table
by referencing values from another table. You can modify a column's value by doing the following:

· Entering a new value for the column as a constant or variable
· Entering an expression that calculates a value for the column
· Entering a null value

Notes:

· Only users that have been granted rights to update the table(s) or column(s) can run the UPDATE
command.

· R:BASE complies with defined rules, even for columns not affected by the update. If an update
breaks a rule, the update is not processed.

· You cannot use UPDATE with computed or autonumbered columns. To change a computed column
value, change the values in the columns to which the computed column refers.

· The UPDATE command will not update data in a multi-table View (a View based on multiple
tables), as the data is not editable.

· A View with a GROUP BY parameter is also not editable.

Updating Column Values

You can update a column with a specific value. The value you use must meet the requirements of the
column's data type, for example, a numeric column cannot be loaded with a text value.

Use the current delimiter character (the default is a comma) to separate each column and its new value
from the next column and value.

Use the following guidelines when modifying data with UPDATE:

· Do not embed commas within entries for CURRENCY, DATE, DATETIME, DOUBLE, INTEGER,
NUMERIC, or REAL data types. R:BASE automatically inserts commas and the current currency
symbol.

· When values for CURRENCY, DOUBLE, NUMERIC, or REAL or data types are decimal fractions,
you must enter the decimal point. When values are whole numbers, R:BASE adds a decimal
point for you at the end of the number. R:BASE adds zeros for subunits in whole currency
values. For example, using the default currency format, R:BASE loads an entry of 1000 as
$1,000.00.

· When values for NOTE or TEXT data types contain commas, you can either enclose the entries
within quotes, or use SET DELIMIT to change the default delimiter (comma) to another
character.

· When values for NOTE or TEXT data types contain single quotes ('), and you are using the
default QUOTES character ('), use two single quotes ('') in the text string. For example, 'Walter
Finnegan''s order.'

· When values for NOTE or TEXT data types exceed the maximum length of a column, R:BASE
truncates the value and adds it to the table. A message is displayed that tells you which row has
been truncated.

Using an Expression or Variable

Enclose expressions in parentheses. If you use global variables in an expression, dot the variable
(.varname). If expressions contain values that have a TEXT data type, enclose the values within quotes.
The default QUOTES character is the single quote (').

R:BASE Database Commands 353

Copyright © 1982-2024 R:BASE Technologies, Inc.

If you attempt to use a null value in an expression or computed column, the result of the expression is
null. However, if you set ZERO to on, R:BASE treats null values as zeros and processes expressions as if
the null value were zero.

Using the WHERE Clause

If an UPDATE command includes a table or view name, you do not need to specify a WHERE or WHERE
CURRENT OF clause. All rows will be updated. If you use a WHERE CURRENT OF clause, you must include
a table or view name in the command.

If you omit a table or view name, you must use a WHERE clause with the UPDATE command so that you
do not change values in more rows than you intended to change. The WHERE clause pinpoints the rows
you want to change. If any columns exist in more than one table, all occurrences are changed if the
column value meets the WHERE clause conditions. Test the WHERE clause by using the SELECT command
before using the clause with UPDATE command. By using a WHERE clause with a SELECT command, you
can view the rows you want to change before changing them.

R:BASE takes significantly less time to process a WHERE clause if one of the columns specified in the
clause is an indexed column.

Using UPDATE with Transaction Processing

If more than one person at a time executes an UPDATE command and transaction processing is on,
R:BASE might not execute the command concurrently. If you hold an UPDATE lock, you can read,
modify, or delete any row in a table. R:BASE blocks any additional requests for UPDATE until other
SELECT or UPDATE locks are cleared.

Examples

The following command changes values in the company and custphone columns of the customer table for
the row where custid equals 100.

UPDATE customer SET company = 'Quality Computers', +
custphone = '617-341-3762' WHERE custid = 100

The following command changes the invoicetotal column in the transmaster table to the value of the
expression (invoicetotal * .9) for rows where transid is greater than 5000.

UPDATE transmaster SET invoicetotal = (invoicetotal * .9) +
WHERE transid > 5000

The following command changes the listprice column to the value of the expression (1.1 * listprice) for
every row in the prodlocation table containing an entry in the listprice column.

UPDATE prodlocation SET listprice = (1.1 * listprice) +
WHERE listprice IS NOT NULL

The following command adds to the set of conditions in the above command. The command below
extracts all of the selling prices from the transdetail table and requires that listprice be changed only if it
matches a current selling price in the table.

UPDATE product SET listprice = (1.1 * listprice) +
WHERE listprice IS NOT NULL AND model = 'CX3000' +
AND listprice IN (SELECT price FROM transdetail +
WHERE model = 'CX3000')

The following command changes the onhand column in the prodlocation table (specified by cursor curs1)
to the value of the expression (onhand - 100). The changes are made only in the row currently
referenced by the cursor.

UPDATE prodlocation SET onhand = (onhand - 100) +
WHERE CURRENT OF curs1

Oterro 11 Help Manual354

Copyright © 1982-2024 R:BASE Technologies, Inc.

The following example shows interactive data updating in an application file. The value of var1 is used in
the expression that is assigned to the onhandcolumn of the prodlocation table. The UPDATE command
changes values in onhand to the value of the expression (onhand - .var1) for all rows containing model
numbers that begin with the letter C. The wildcard character % indicates one or more additional
characters.

SET VARIABLE var1 TEXT
DIALOG 'Enter quantity by which to reduce inventory: ' var1 vend 1
SET VARIABLE var1 INTEGER
UPDATE prodlocation SET onhand = (onhand - .var1) +
WHERE model LIKE 'C%'

The following command changes the last names of two employees. This command omits the table name,
thereby causing a global change to all tables that meet the WHERE clause criteria.

UPDATE SET emplname TO 'Smith-Simpson' WHERE +
(empfname = 'Mary' AND emplname = 'Simpson') OR +
(empfname = 'John' AND emplname = 'Smith')

The following example corrects a problem that can occur with an incorrect date sequence setting. For
example, assume that you had the date sequence set to a four-digit year when you entered transactions,
and you entered dates with a two-digit year (3/1/93). The dates would be stored as 3/1/0093. And, if you
wanted the date to be in the 20th century, you could use the UPDATE command to modify the existing
dates to 20th century dates by adding 1900 years to each date, with the ADDYR function.

The SET DATE command makes sure that you are using a four-digit year. The UPDATE command
changes all transdate values to 20th century dates, where the current value of the column is less than
1/1/1900. The last SET DATE command returns to a two-digit date sequence and format.

SET DATE MM/DD/YYYY
UPDATE transmaster SET transdate = (ADDYR(transdate,1900)) +
WHERE transdate < 1/1/1900
SET DATE MM/DD/YY

Assume that you wanted to update the inventory table with the sum of the units sold from the orders
table. Because there are many rows in the orders table for each part number, you cannot do this directly
with the UPDATE command. The CREATE VIEW command creates a view containing the sum of the units
sold from the orders table. The UPDATE command updates the inventory table by extracting the totalsold
value from the view named orders_view for each part number.

CREATE VIEW orders_view (partid,totalsold) AS SELECT +
partid, sum(sold) FROM orders GROUP BY partid

UPDATE inventory SET onhand = (T1.onhand - T2.totalsold) +
FROM inventory T1, orders_view T2 +
WHERE T1.partid = T2.partid

R:BASE Database Commands 355

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.18 W

6.18.1 WHERE

Use a WHERE clause in commands to qualify or restrict the rows affected by a command.

Options

AND
Indicates the following condition must be met along with the preceding condition.

condition
Identifies requirements to be in the WHERE syntax.

NOT
Reverses the meaning of a connecting operator. AND NOT, for example, indicates that the first condition
must be met and the following condition must not be met.

OR
Indicates the following condition can be met instead of the preceding condition.

About the WHERE Clause

In most commands, a WHERE clause follows the syntax diagram above.

The two main elements in any WHERE clause are conditions and connecting operators.

We now support "COUNT = LAST" in two different ways. If the entire WHERE clause is "WHERE COUNT =
LAST" then R:BASE works like it always has to quickly fetch the last row of the table. The NEW
functionality is to have other conditions in the WHERE clause and you want the last row of whatever
qualifies.

To make it work this way specify the other conditions and then add "AND COUNT = LAST".

Here is an example:

SELECT * FROM Customer WHERE CustID > 100 AND COUNT = LAST

WHERE Clause Conditions

The following syntax diagram and table show the basic formats for WHERE clause conditions, which can
be used alone or together.

Oterro 11 Help Manual356

Copyright © 1982-2024 R:BASE Technologies, Inc.

Basic WHERE Clause Conditions

Condition Syntax Description

colname op DEFAULT True if a column value compares correctly with the DEFAULT
value for the column. Op can be =, <>, >=, >, <=, or <.

colname = USER True if a column value equals the current user identifier.

item1 IS NULL True if item1 has a null value. Item1 can be a column name,
value, or expression. A null value cannot be used in a
comparison with an operator.

item1 op item2 True if the relationship between two items is true as defined by
an operator. Item1 can be a column name, value, or
expression; item2 can be a column name, value, expression, or
sub-SELECT statement.

R:BASE Database Commands 357

Copyright © 1982-2024 R:BASE Technologies, Inc.

COUNT=INSERT Refers to the last row inserted in a table by the current user,
even if it has been modified by another user. The
COUNT=INSERT condition can be used with a single-table view,
but not with a multi-table view. If there is not a newly inserted
row in the table, then COUNT=INSERT performs the same action
as COUNT=LAST, and fetches the current end row of the table.

COUNT=LAST Refers to the last row in a table. The COUNT=LAST condition can
be used with a single-table view, but not with a multi-table view.

COUNT op value Refers to a number of rows defined by op and value.

LIMIT=value Specifies a number of rows affected by a command. A LIMIT
condition should be the last condition in a WHERE clause.

EXISTS (sub-SELECT statement) True if sub-SELECT statement returns one or more rows.

item1 BETWEEN item2 AND item3 True if the value of item1 is greater than or equal to the value of
item2, and if the value of item1 is less than or equal to the value
of item3.

colname LIKE 'string ' True if a column value equals the text string. With LIKE, a string
can also be a DATE, TIME, or DATETIME value. The text string
can contain R:BASE wildcard characters.

colname LIKE 'string ' ESCAPE 'chr ' True if a column value equals a text string. If you want to use a
wildcard character as a text character in the string, specify the
ESCAPE character 1chr. In the string, use chr in front of the
wildcard character.

colname CONTAINS 'string ' True if a column value contains the text string.

colname SOUNDS 'string ' True if the soundex value of a column matches the soundex
value of the text string.

item1 IN (vallist) True if item1 is in the value list.

item1 IN (sub-SELECT statement) True if item1 is in the rows selected by a sub-SELECT.

item1 op ALL (sub-SELECT
statement)

True if the relationship between item1 and every row returned
by a sub-SELECT statement matches an operator.

item1 op ANY(sub-SELECT statement)True if the relationship between item1 and at least one value
returned by a sub-SELECT statement matches an operator.

item1 op SOME (sub-SELECT
statement)

ANY and SOME are equivalent.

Notes:

· Placing NOT before most text operators (such as NULL or BETWEEN) reverses their meaning.

· When a SELECT statement is part of a WHERE clause, it is called a sub-SELECT clause. A sub-SELECT
clause can contain only one column name (not a column list or *), expression, or function. The INTO
and ORDER BY clauses in a sub-SELECT are ignored.

You can only use the current wildcard characters to compare a column to a text value when using the
LIKE comparison. The default wildcard characters are the percent sign (%), which is used for one or
more characters, and the underscore (_), which is used for a single character.

If you compare a column with a value, you can either enter the value or specify a global variable. If you
specify a variable, R:BASE compares the column with the current value of the variable.

To significantly reduce processing time for a WHERE clause, use INDEX processing. To use indexes, the
following conditions must be met:

· A condition in the WHERE clause compares an indexed column.
· If the WHERE clause contains more than one condition, R:BASE selects the condition that places

the greatest restriction on the WHERE clause.
· Conditions are not joined by the OR operator.
· The comparison value is not an expression.

Connecting Operators

When you use more than one condition in a WHERE clause, the conditions are connected using the
connecting operators AND, OR, AND NOT, and OR NOT.

Oterro 11 Help Manual358

Copyright © 1982-2024 R:BASE Technologies, Inc.

The connecting operator AND requires that both conditions it separates must be satisfied. The connecting
operator OR requires that either condition it separates must be satisfied.

The connecting operator AND NOT requires that the preceding condition must be satisfied, and the
following condition must not be satisfied. The connecting operator OR NOT requires that either the
preceding condition must be satisfied, or any condition except the following condition must be satisfied.

In WHERE clauses with multiple conditions, conditions that are connected by AND or AND NOT are
evaluated before those connected by OR or OR NOT. However, you can control the order in which
conditions are evaluated by either placing parentheses around conditions or using the SET AND condition.
If you set AND off, conditions are always evaluated from left to right.

WHERE Builder

When launching the WHERE Clause Builder, the following window will appear:

Examples

The following WHERE clause chooses sales amounts that are less than the value of a variable containing
the daily average.

... WHERE amount < .dailyave

The following WHERE clause specifies the seventh row.

... WHERE COUNT = 7

The following WHERE clause specifies each row from the employeetable that contains both the first name
June and the last name Wilson.

SELECT * FROM employee WHERE empfname = 'june' AND emplname = 'wilson'

The following WHERE clause selects dates in the actdate column that are greater than dates in the
begdate column or are less than dates in the enddate column.

... WHERE actdate BETWEEN begdate AND enddate

The next three WHERE clauses use the following data:

empfname emplname
-------- --------
 Mary Jones
 John Smith
 Agnes Smith
 John Brown

In both of the following clauses, R:BASE first evaluates the conditions connected by AND, selecting John
Smith. Then R:BASE adds any Marys to the list because the connecting operator is OR. The final result
includes John Smith and Mary Jones.

...WHERE empfname = 'Mary' OR empfname = 'John' +
 AND emplname = 'Smith'

R:BASE Database Commands 359

Copyright © 1982-2024 R:BASE Technologies, Inc.

...WHERE empfname = 'Mary' OR (empfname = 'John' +
 AND emplname = 'Smith')

By moving the parentheses around the conditions connected by OR, you can select only John Smith. In
the following WHERE clause, the first name can be either Mary or John, but the last name must be Smith.

...WHERE (empfname = 'Mary' OR empfname = 'John') AND +
 emplname = 'Smith'

The following example illustrates a sub-SELECT in a WHERE clause. Assume you wanted a list of all sales
representatives that had transactions greater than $100,000, and the information for such a list was
contained in two tables, employee and transmaster. The relevant columns in these tables are:

employee transmaster
empid emplname empid netamount
----- --------- ----- ------------
 102 Wilson 133 $32,400.00
 129 Hernandez 160 $9,500.00
 133 Coffin 129 $6,400.00
 165 Williams 102 $176,000.00
 166 Chou 160 $194,750.00
 167 Watson 129 $34,125.00
 160 Smith 131 $152,250.00
 131 Simpson 102 $87,500.00
 102 $22,500.00
 102 $40,500.00
131 $108,750.00

 131 $80,500.00
 129 $56,250.00
 102 $57,500.00
 160 $140,300.00
 129 $95,500.00
 129 $155,500.00
 133 $88,000.00
 131 $130,500.00
 102 $3,060.00
 165 $3,060.00
 167 $3,830.00
 133 $12,740.00
 165 $26,310.00

To display a list of employees in the transmaster table with a transaction larger than $100,000, enter the
following command:

SELECT empid, emplname FROM employee WHERE empid IN +
 (SELECT empid FROM transmaster WHERE netamount > 100000)

R:BASE displays the following list:

 empid emplname
--------- ----------------
 102 Wilson
 129 Hernandez
 131 Simpson
 160 Smith

Note: You can use a sub-SELECT in any command that allows a full WHERE clause.

Oterro 11 Help Manual360

Copyright © 1982-2024 R:BASE Technologies, Inc.

6.18.1.1 ORDER BY

Use the ORDER BY clause with an R:BASE command to specify the order in which rows of data from a
table are displayed.

Options

,
Indicates that this part of the command is repeatable.

ASC
DESC
Specifies whether to sort a column in ascending or descending order.

#c
Takes the place of a column name and refers to the column numbers displayed with the LIST TABLE
command.

colname
Sorts by any column name or combination of column names.

seq_no
Refers to the items listed in the SELECT command that is using the ORDER BY command, ordered from
left to right. An item can be a column name, expression, or SELECT function.

About the ORDER BY Command

The syntax for the ORDER BY clause is the same for all commands. ORDER BY must refer to only one
table or view.

You can significantly reduce the time R:BASE takes to process an ORDER BY clause when the column or
columns listed in the ORDER BY clause are included in an index with the same column sort order as that
specified in the ORDER BY clause.

Using the SET SORT Command
The ORDER BY command uses the R:BASE automatic sort optimizer. If you are sorting extremely large
tables, and if your disk space is limited, the automatic sort optimizer might be unable to sort the data.
Instead, use the SET SORT ON command because it uses the least disk space necessary to sort data;
however, the SET SORT ON command is slower than the automatic sort.

Examples

The following command displays data from the custid, company, and custcity columns from the
customertable.

SELECT custid, company, custcity FROM customer

The ORDER BY clause in the command below arranges the custidvalues in descending order.

SELECT custid, company, custcity FROM customer +
ORDER BY custid DESC

You can substitute a column's sequence number for a column named in the ORDER BY clause. You must
use a sequence number when referring to an expression, function, constant, or when a UNION operator
is used. The following command is equivalent to the command example above.

R:BASE Database Commands 361

Copyright © 1982-2024 R:BASE Technologies, Inc.

SELECT custid, company, custcity FROM customer ORDER +
BY 1 DESC

R:BASE for DOS only: You can also specify the maximum and minimum memory allocated with the SET
SORT command using the MAX and MIN functions. You can show the current memory allocation settings
with SHOW SORT using the MAX, MIN, and LAST functions-LAST shows the amount of memory you need
to perform the last sort.

6.18.1.2 GROUP BY

This clause determines which rows of data to include.

Options

,
Indicates that this part of the command is repeatable.

ASC
DESC
Specifies whether to sort a column in ascending or descending order.

colname
Specifies a column name. The column name is limited to 128 characters.

In a command, you can enter #c, where #c is the column number shown when the columns are listed
with the LIST TABLES command. In an SQL command, a column name can be preceded by a table or
correlation name and a period (tblname.colname).

GROUP BY
Returns a groups of rows as a summary resulting in only unique rows. This option is generally used with
SELECT commands.

HAVING clause
Limits the rows affected by the GROUP BY clause.

ORDER BY clause
Sorts rows of data.

About the GROUP BY command

This optional clause groups rows according to the values in one or more columns and sorts the results.
GROUP BY consolidates the information from several rows into one row. This results in a table with one
row for each value in the named column or columns and one or more values per column.

The columns listed in the GROUP BY clause are related to those listed in the command clause. Any
column named in the GROUP BY clause can also be named in the command clause, but any column not
named in the GROUP BY clause can be used only in the command clause if the column is used in a
SELECT command.

Examples

The SELECT command clause can contain the columns named in the GROUP BY clause, and SELECT
functions that refer only to columns not named in the GROUP BY clause. Because the GROUP BY clause
processes information resulting from a WHERE clause, you can add a GROUP BY clause to see the sales
each employee has made:

SELECT empid FROM transmaster WHERE netamount < $100,000 +

Oterro 11 Help Manual362

Copyright © 1982-2024 R:BASE Technologies, Inc.

GROUP BY empid

The following intermediate result table contains columns not named in the command clause because the
command clause has not been processed yet (not all the columns fit in the display, however). The first
part of the processing is to group the rows by empid. Because seven different employees are included,
the intermediate result table includes seven rows.

Intermediate Result Table-GROUP BY empid

transid custid empid netamount

4975, 4980, 5000,
5060, 5045

101, 101, 101, 101, 100 102 $87,500, $22,500, $40,500,
$57,500, $3,060

4790, 4865, 5050,
5070

104, 102, 104, 104 129 $6,400, $34,125, $56,250,
$95,500

5015 103 131 $80,500

4760, 5080, 5048 100, 100, 103 133 $32,400, $88,000, $12,740

4780 105 160 $9,500

5046, 5049 101, 102 165 $3,060, $26,310

5047 102 167 $3,830

You can include more than one column in a GROUP BY clause. If you group the rows in the above
example by custid as well as empid, the command looks like this:

SELECT empid, custid FROM transmaster +
WHERE netamount < $100,000 GROUP BY empid, custid

In the following table, rows are now grouped by both empid and custid, resulting in eleven groups.

Intermediate Result Table-GROUP BY empid and custid

transid custid empid netamount

5045 100 102 $3,060

4975, 4980, 5000, 5060 101 102 $87,500, $22,500, $40,500, $57,500

4865 102 129 $34,125

4790, 5050, 5070 104 129 $64,000, $56,250, $95,500

5015 103 131 $80,500

4760, 5080 100 133 $32,400, $88,000

5048 103 133 $12,740

4780 105 160 $9,500

5046 101 165 $3,060

5049 102 165 $26,310

5047 102 167 $3,830

If one or more of the columns named in the GROUP BY clause contain null values, R:BASE forms a
separate group for null values. Review the result of this SELECT command for the employee table:

SELECT empid, emplname, hiredate, emptitle FROM employee

empid emplname hiredate emptitle

102 Wilson 03/18/90 Manager
129 Hernandez 08/28/91 Manager
131 Smith 04/14/92 -0-
133 Coffin 11/26/93 Representative
160 Simpson 01/09/94 -0-
165 Williams 07/05/92 Representative
167 Watson 07/10/92 Representative

R:BASE Database Commands 363

Copyright © 1982-2024 R:BASE Technologies, Inc.

166 Chou 07/10/93 Sales Clerk

If you group these rows by the emptitle column, which contains null values, you get the following
intermediate result table:

Intermediate Result Table-GROUP BY emptitle

empid emplname hiredate emptitle

102, 129 Wilson, Hernandez 03/18/90, 08/28/91 Manager

133, 165, 167 Coffin, Williams,
Watson

11/26/93, 07/05/92,
07/10/92

Representative

166 Chou 07/10/93 Sales Clerk

131, 160 Smith, Simpson 04/14/94, 01/09/94 -0-

6.18.1.3 HAVING

This clause determines which rows of data to include based on the results of a prior GROUP BY clause.

Options

AND
OR
AND indicates two conditions must both be true.
OR indicates either condition must be true.

condition
Specifies a combination of one or more expressions and/or operations that would evaluate to either true
or false. See the "HAVING Conditions" below.

NOT
Reverses the meaning of an operator or indicates that a condition is not true.

About the HAVING command

The optional HAVING clause selects rows that meet one or more conditions from among the results of the
GROUP BY clause. HAVING works the same as a WHERE clause with the following exceptions:

· A WHERE clause modifies the intermediate results of a FROM clause; a HAVING clause modifies
the intermediate results of a GROUP BY clause.

· A HAVING clause can include SELECT functions.

HAVING Conditions:

Oterro 11 Help Manual364

Copyright © 1982-2024 R:BASE Technologies, Inc.

Examples

To display sales information for only those employees who have made more than one sale to the same
customer, add a HAVING clause such as the following to one of the examples shown previously in GROUP
BY. When used in a HAVING clause, SELECT functions compute results based on the values grouped in
the specified column. In this HAVING clause, COUNT returns the number of values grouped in the transid
column.

SELECT empid, custid FROM transmaster +
WHERE netamount < $100,000 +
GROUP BY empid, custid HAVING COUNT(transid) > 1

Intermediate Result Table-HAVING COUNT(transid) > 1

transid custid empid netamount

R:BASE Database Commands 365

Copyright © 1982-2024 R:BASE Technologies, Inc.

4975, 4980, 5000, 5060 101 102 $87,500, $22,500, $40,500, $57,500

4790, 5050, 5070 104 129 $6,400, $56,250, $95,500
5080 100 133 $32,400, $88,000

6.18.2 WHILE/ENDWHILE

Use the WHILE...ENDWHILE structure in a program to continuously run a set of commands based on a
specified condition.

Options

condlist
Specifies a list of conditions that identify the requirements to be met.

while-block
Specifies commands to be executed if the WHILE condition is true.

About the WHILE...ENDWHILE Command

A WHILE ... ENDWHILE structure consists of conditions, commands, and an ENDWHILE statement. As long
as WHILE conditions are true, R:BASE runs the commands repeatedly.

WHILE Conditions

The basic WHILE conditions are the same as those used in an IF...ENDIF structure and are as follows:

Condition Description

varname IS NULL The value of the variable is null.

varname IS NOT NULL The value of the variable is not null.

varname CONTAINS 'string' The variable has a TEXT data type and contains a 'string'
as a substring in the variable value.

varname NOT CONTAINS 'string' The variable has a TEXT data type and a 'string' is not
contained as a substring in the variable value.

varname LIKE 'string' The variable equals a 'string.' A 'string' can contain
wildcards.

varname NOT LIKE 'string' The variable does not equal the 'string'. A 'string' can
contain wildcards.

varname BETWEEN value1 AND value2 The value of the variable is greater than or equal to
value1 and less than or equal to value2. The variable and
the values must be the same data type.

varname NOT BETWEEN value1 AND value2 The value of the variable is less than value1 or greater
than value2. The variable and the values must be the
same data type.

item1 op item2 Item1 has the specified relationship to item2. Item1 can
be a column name, value, or expression; item2 can be a
column name, value, or expression.

A variable can be substituted for the first variable in each of the condition formats shown above, and for
either item when using an operator comparison. The condition should not use dotted variables, unless the
current value of that variable is to be evaluated. When comparing items with an operator, (e.g. item1 <
item2, item1 >= item2, etc.) the condition may be enclosed in parentheses, where R:BASE will evaluate
the expression each time through the loop.

Oterro 11 Help Manual366

Copyright © 1982-2024 R:BASE Technologies, Inc.

You can only use wildcard characters with the LIKE and NOT LIKE operators. For example, varname LIKE
'string%.'

You can combine conditions from the WHILE condition list by using the connecting operators AND, OR,
AND NOT, and OR NOT. Be careful when using these conditions in a condition list. Conditions connected
by AND are evaluated first, then conditions connected by OR are evaluated. However, you can use
parentheses to set the evaluation order.

WHILE Loop Commands

All WHILE loop commands are retained in memory, so a WHILE loop runs more quickly than a GOTO or
LABEL structure. A computer must have enough available memory to read all of the commands in a
WHILE loop, or the program terminates abnormally.

R:BASE optimizes commands in a WHILE loop so that it runs more quickly. Use the following guidelines
when constructing WHILE loops so they run more quickly.

· Do not clear variables in the WHILE loop. Rather, set those variables to null.
· Do not define variables within the WHILE loop. Only define variables outside of the loop because

the values can change within the loop.
· If you issue multiple SET VARIABLE commands on a single command line, then those variables

will not be optimized. If you want to increase the speed for that loop, you should put the SET
VARIABLE commands on separate lines.

To turn off WHILE loop optimization, set WHILEOPT off.

The ENDWHILE Statement

ENDWHILE indicates the end of the loop. Place an ENDWHILE statement at the end of each WHILE loop.
Each time R:BASE reaches the ENDWHILE statement, R:BASE returns to the WHILE command at the top
of the loop and checks to see whether the conditions are still true or false. If true, R:BASE again runs the
commands between the WHILE and the ENDWHILE. If false, R:BASE runs the command line immediately
following the ENDWHILE.

Exiting from a WHILE Loop

To exit from a WHILE loop before the WHILE condition becomes false, use an IF...ENDIF structure to
check other conditions, then use BREAK to exit from the WHILE loop. The BREAK command causes the
WHILE loop to terminate when the conditions specified in the IF statement become true.

Never use GOTO to exit from a WHILE loop; use BREAK instead. BREAK clears the WHILE loop. When you
do not use BREAK or the naturally occurring exit (that is, when the WHILE loop conditions are no longer
true) to exit from a WHILE loop, R:BASE continues to read commands into memory. If you have a large
command or procedure file, you can run out of memory and your program terminates abnormally.

Skip to the next WHILE Occurrence

Use the CONTINUE command to move to the next occurrence of the WHILE loop and run the code.

In the following example, when the code is run, processing returns to line 3 after it completes the
CONTINUE command on line 6. The while-block commands in line 8 are not run.

SET VARIABLE v1=0
SET VARIABLE V2=1
WHILE v1 = 0 THEN
 *(while-block commands)
 IF v2 <> 0 THEN
 CONTINUE
 ENDIF
 *(while-block commands)
ENDWHILE

Example

R:BASE Database Commands 367

Copyright © 1982-2024 R:BASE Technologies, Inc.

In the following example, R:BASE runs the commands in the WHILE block and evaluates the v2 condition
in the IF statement. If v2 is not equal to zero, R:BASE runs the BREAK command and terminates the
WHILE loop. R:BASE then runs the commands immediately following the ENDWHILE statement. As long
as the WHILE condition (v1) is true and the IF condition (v2) remains false, the WHILE loop continues
processing.

SET VARIABLE v1 = 0
WHILE v1 = 0 THEN
 *(while-block commands)
 IF v2 <> 0 THEN
 BREAK
 ENDIF
 *(while-block commands)
ENDWHILE
*(next command outside the while-block

Part

VII

R:BASE Database Functions 369

Copyright © 1982-2024 R:BASE Technologies, Inc.

7 R:BASE Database Functions

7.1 Function Categories

Arithmetic and Mathematical Functions
ABS AVG BRND COUNT

DIM EXP LAVG LISTOF

LMAX LMIN LOG LOG10

LSTDEV LSUM LVARIANCE MAX

MIN MOD PSTDEV PVARIANCE

RANDOM RNDDOWN RNDUP ROUND

SIGN SQRT STDEV SUM

VARIANCE

Conversion Functions
AINT ANINT CHAR CTXT

DWRD FLOAT HTML ICHAR

IHASH INT MAKEUTF8 NINT

SOUNDEX

Database Utility Functions
CVAL IINFO TINFO

Date and Time Functions
ADDDAY ADDFRC ADDHR ADDMIN

ADDMON ADDSEC ADDYR DATETIME

DEXTRACT DNW DWE GETDATE

IDAY IDIM IDOY IDWK

IFRC IHR ILY IMIN

IMON ISEC IWOY IYR

IYR4 JDATE RDATE RTIME

TDWK TEXTRACT TMON

Encryption Functions

DECRYPT ENCRYPT

Financial Functions
FV1 FV2 PMT1 PMT2

PV1 PV2 RATE1 RATE2

RATE3 TERM1 TERM2 TERM3

Keyboard and Environment Functions
ENVVAL CVAL CHKCUR CHKKEY

CHKFILE CHKVAR CVTYPE DELFUNC

DLCALL DLFREE DLLOAD FILENAME

FINDFILE IFWINDOW ISTAT GETKEY

LASTKEY

Logical Functions
IFCASEEQ IFEQ IFEXISTS IFF

IFGE IFGT IFLE IFLT

IFNE IFNULL

String Manipulation Functions
CTR FORMAT ICAP ICAP1

ICAP2 ICAP3 ISALPHA ISDIGIT

ISLOWER ISSPACE ISTR ISUPPER

Oterro 11 Help Manual370

Copyright © 1982-2024 R:BASE Technologies, Inc.

ITEMCNT LJS LTRIM LUC

REVERSE RJS RTRIM SFIL

SGET SKEEP SKEEPI SLEN

SLOC SLOCI SLOCP SMOVE

SPUT SRPL SSTRIP SSTRIPI

SSUB SSUBCD STRIM TRANSLATE

TRIM ULC

Trigonometric Functions
ACOS ASIN ATAN ATAN2

COS COSH SIN SINH

TAN TANH

7.2 A

7.2.1 ABS

(ABS(arg))

Returns the absolute or positive value of arg (a value with a DOUBLE, REAL, NUMERIC, or INTEGER data
type).

In the following example, the value of vabs is 2.

SET VAR vnum = -2
SET VAR vabs = (ABS(.vnum))

7.2.2 ACOS

(ACOS(arg))

Computes the arccosine of arg where arg is in the range -1 to 1. The result is an angle in radians
between 0 and pi (where pi = 3.14159265358979).

In the following example, the value of vacos is 2.094395, the arccosine of -0.5.

SET VAR vacos = (ACOS(-0.5))

7.2.3 ADDDAY

(ADDDAY(date,int))

Adds the specified number of days to a date or datetime value. Functions that result in an invalid date,
for example, February 30, will return NULL.

7.2.4 ADDFRC

(ADDFRC(time,int))

Adds the specified number of milliseconds to a time or datetime value.

7.2.5 ADDHR

(ADDHR(time,int))

Adds the specified number of hours to a time or datetime value.

R:BASE Database Functions 371

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.2.6 ADDMIN

(ADDMIN(time,int))

Adds the specified number of minutes to a time or datetime value.

7.2.7 ADDMON

(ADDMON(date,int))

Adds the specified number of months to a date or datetime value.

7.2.8 ADDSEC

(ADDSEC(time,int))

Adds the specified number of seconds to a time or datetime value.

7.2.9 ADDYR

(ADDYR(date,int))

Adds the specified number of years to a date or datetime value.

7.2.10 AINT

(AINT(arg))

Truncates the decimal fraction, returning a whole number in the original REAL, NUMERIC, or DOUBLE
data type.

In the following example, the value of vaint is 1.

SET VAR vaint = (AINT(1.8))

7.2.11 ANINT

(ANINT(arg))

Rounds the decimal fraction to the nearest integer, returning a whole number in the original REAL,
NUMERIC, or DOUBLE data type.

In the following example, the value of vanint1 is 3.0 and the value of vanint2 is 4.0.

SET VAR vanint1 = (ANINT(2.6))
SET VAR vanint2 = (ANINT(4.45))

7.2.12 ASIN

(ASIN(arg))

Computes the arcsine of arg where arg is in the range -1 to 1. The result is an angle in radians between -
pi/2 and pi/2.

In the following example, the value of vasin is -0.5236 (-pi/6 radians)

SET VAR vasin = (ASIN(-0.5))

Oterro 11 Help Manual372

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.2.13 ATAN

(ATAN(arg))

Computes the arctangent of arg in radians where arg is any amount. The result is an angle in radians
between -pi/2 and pi/2.

In the following example, the value of vatan is 0.7854 (pi/4 radians).

SET VAR vatan = (ATAN(1))

7.2.14 ATAN2

(ATAN2(x,y))

Computes the arctangent of x/y. The result is the angle in radians between -pi/2 and pi/2.

In the following example, the value of vatan2 is 0.7854.

SET VAR vatan2 = (ATAN2(1,1))

7.3 B

7.3.1 BRND

(BRND(arg1,arg2,arg3))

Rounds REAL, DOUBLE, or CURRENCY data to a specific number of decimal places and allows
specification of the number of significant digits to return. Arg1 is the value to be rounded. Arg2 is the
number of significant digits to return, and arg3 is the precision The precision is specified as a decimal
number, for example, .01 rounds to two decimal places.

In the following example, the value of vresult is 1234.57.

SET VAR vresult = (BRND(1234.5678342,8,.01))

7.4 C

7.4.1 CHAR

(CHAR(integer))

Converts an ASCII integer value to its corresponding character. This is not the same as the CHAR data
type.

In the following example, the value of vchar1 is A and the value of vchar2 is a.

SET VAR vchar1 = (CHAR(65))
SET VAR vchar2 = (CHAR(97))

See also:

ASCII Character Chart

7.4.2 CHKCUR

(CHKCUR('cursorname'))

Checks to see if a cursor is declared and is not dropped. The function returns an integer value of 1 if the
name exists and is not dropped, and 0 if it is not declared or dropped.

R:BASE Database Functions 373

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.3 CHKFILE

(CHKFILE('filespec'))

Checks to see if a file or folder name exists. If no path is specified, the function checks for the file or
folder name in the current directory. Otherwise, the function checks for the file or folder name in the
specified location.

The function returns a 1 if the file or folder name is found, and 0 if it is not found. Wildcards in the
filename will produce unpredicatable results.

7.4.4 CHKFUNC

(CHKFUNC('function_name'))

Checks to see if a DLL function exists or not. If the DLL function exists, a 1 is returned. If the DLL
function does not exist, a 0 is returned.

 Example:

 SET VAR v1 = (CHKFUNC('FunctionName'))

7.4.5 CHKKEY

(CHKKEY(0))

Returns an integer value of 1 if there are keystrokes available in the type-ahead buffer. Returns 0 if no
keystrokes are available. Use CHKKEY before GETKEY to determine if a key is available.

CHKKEY does nothing with the zero that you enter in parentheses; CHKKEY returns a value without
receiving one.

7.4.6 CHKVAR

(CHKVAR('varname'))

Checks to see if a variable name exists. The function returns an integer value of 1 if the variable name
exists or declared, and 0 if it is not found or declared.

7.4.7 COS

(COS(angle))

Returns the trigonometric cosine of angle. The result is between -1 and 1.

In the following example, the value of vcos is 0.5002.

SET VAR vcos = (COS(1.047))

7.4.8 COSH

(COSH(angle))

Returns the hyperbolic cosine of angle.

In the following example, the value of vcosh is 1.6000.

SET VAR vcosh = (COSH(1.047))

Oterro 11 Help Manual374

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.9 CTR

(CTR(text,width))

Centers text in width characters, returning a text string.

In the following example, the value of vctr is ABCD .

The text string is centered in a 10-character field.

SET VAR vctr = (CTR('ABCD',10))

7.4.10 CTXT

(CTXT(arg))

Converts an internal value, returning a text string.

In the following example, the value of vctxt1 is the value 37.6 and is a REAL data type. The value of
vctxt2 is the value 37.6 and is a TEXT data type. If you attempt to use vctxt2 in a mathematical function,
it will fail.

SET VAR vctxt2 = (CTXT(.vctxt1))

7.4.11 CVAL

(CVAL('showkeyword'))

Returns the current value or setting of 'showkeyword'. You must either enclose the SHOW keyword in
quotation marks or use a dot variable that has a TEXT data type to which you have assigned the SHOW
keyword. You can use all SHOW keywords with CVAL, as well as DATABASE, DBPATH, CURRDIR.

The following keywords can be used for (CVAL('keyword')):

· AND
· ANSI
· AUTOCOMMIT
· AUTODROP
· AUTOSKIP
· BELL
· BLANK
· BUILD
· CASE
· CLEAR
· CLIPBOARDTEXT
· COLOR
· COMPUTER
· CONNECTIONS
· CURRDIR
· CURRDRV
· CURRENCY
· CURRENTPRINTER
· DATABASE
· DATE
· DATE CENTURY
· DATE FORMAT
· DATE SEQUENCE
· DATE YEAR
· DBCOMMENT
· DBPATH
· DEBUG
· DELIMIT
· DRIVES
· ECHO

R:BASE Database Functions 375

Copyright © 1982-2024 R:BASE Technologies, Inc.

· EDITOR
· EOFCHAR
· EQNULL
· ERROR
· ERROR DETAIL
· ERROR VARIABLE
· ESCAPE
· EXPLODE
· FASTFK
· FASTLOCK
· FEEDBACK
· FILES
· FIXED
· HEADINGS
· IDQUOTES
· INSERT
· INTENSITY
· INTERVAL
· LAST BLOCK TABLE
· LAST ERROR
· LAYOUT
· LINEEND
· LINES
· LOOKUP
· MANOPT
· MANY
· MAXTRANS
· MDI
· MESSAGES
· MIRROR
· MULTI
· NAME
· NETUSER
· NOTE_PAD
· NULL
· OLDLINE
· ONELINE
· PAGEMODE
· PASSTHROUGH
· PLATFORM
· PLUS
· POSFIXED
· PORTS
· PRINTERS
· PRN_Status
· PRN_Orientation
· PRN_Size
· PRN_Source
· PRN_Quality
· PRN_Copies
· PRN_ColorMode
· PRN_DuplexMode
· PRN_Collation
· QUALCOLS
· QUOTES
· REFRESH
· REVERSE
· ROWLOCKS
· RULES
· SCRATCH
· SCREENSIZE
· SELMARGIN
· SEMI
· SERVER
· SINGLE

Oterro 11 Help Manual376

Copyright © 1982-2024 R:BASE Technologies, Inc.

· SORT
· SORTMENU
· STATICDB
· TIME
· TIME FORMAT
· TIME SEQUENCE
· TIMEOUT
· TOLERANCE
· TRACE
· TRANSACT
· USER
· USERAPP
· USERDOMAIN
· USERID
· VERIFY
· VERSION
· VERSION BITS
· VERSION BUILD
· VERSION SYSTEM
· WAIT
· WALKMENU
· WHILEOPT
· WIDTH
· WINBEEP
· WINDOWSPRINTER
· WRAP
· WRITECHK
· ZERO
· ZOOMEDIT

Examples:

In the following example, the value of vcval is OFF if the value of MULTI is set to off.

SET VAR vcval = (CVAL('MULTI'))

In the following example, the user keyword is loaded into a variable and then the variable is used in the
CVAL function. It returns the current user identifier.

SET VAR vword text = 'USER'
SET VAR vuser = (CVAL(.vword))

7.4.11.1 AND

(CVAL('AND'))

Returns the status of the AND command parameter (ON/OFF).

7.4.11.2 ANSI

(CVAL('ANSI'))

Returns the status of the ANSI command parameter (ON/OFF).

7.4.11.3 AUTOCOMMIT

(CVAL('AUTOCOMMIT'))

Returns the status of the AUTOCOMMIT command parameter (ON/OFF).

R:BASE Database Functions 377

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.4 AUTODROP

(CVAL('AUTODROP'))

Returns the status of the AUTODROP display control (ON/OFF).

7.4.11.5 AUTOSKIP

(CVAL('AUTOSKIP'))

Returns the status of the AUTOSKIP command parameter (ON/OFF).

7.4.11.6 BELL

(CVAL('BELL'))

Returns the status of the BELL command parameter (ON/OFF).

7.4.11.7 BLANK

(CVAL('BLANK'))

Returns an empty variable value.

BLANK is similar to a null value, but is not based on your database NULL setting.

7.4.11.8 BUILD

(CVAL('BUILD'))

The BUILD parameter of the SHOW command can be used to determine the exact build number of the
R:BASE Front-End GUI. This can also be used with CVAL to store the build number information in a
variable.

See also:
(CVAL('VERSION')) to determine the version as well as build number of R:BASE Engine
(CVAL('VERSION BUILD')) to determine only the build number of the R:BASE Engine

7.4.11.9 CASE

(CVAL('CASE'))

Returns the status of the CASE command parameter (ON/OFF).

7.4.11.10 CLEAR

(CVAL('CLEAR'))

Returns the status of the CLEAR command parameter (ON/OFF).

7.4.11.11 CLIPBOARDTEXT

(CVAL('CLIPBOARDTEXT'))

Returns the contents of the Windows Clipboard.

Oterro 11 Help Manual378

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.12 COLOR

(CVAL('COLOR'))

Returns the value for the foreground and background COLOR of data displays.

This CVAL parameter is specific to R:BASE for DOS.

7.4.11.13 COMPUTER

(CVAL('COMPUTER'))

Returns the name of your computer.

Example:

SET VAR vComp = (CVAL('COMPUTER'))

7.4.11.14 CONNECTIONS

(CVAL('CONNECTIONS'))

Returns the number of users currently connected to the current database or 0 if not connected. In the
event of a non-graceful disconnect R:BASE will not be able to decrement the connections count. This can
occur if the network session terminates unexpectedly, or if the users operating system crashes. If this
happens the count will be innacurate until all users disconnect from the database. This works because the
last session of R:BASE will be able to tell that NO users are connected and will reset the count to zero.
Unfortunatly, due to file system limitations, R:BASE is only able to tell if a database is open by any users
or not at all, and is not able to tell, except by this count, how many users are connected.

7.4.11.15 CURRDIR

(CVAL('CURRDIR'))

Returns the current directory. This is the same information returned by using the CD command at the R>
Prompt.

7.4.11.16 CURRDRV

(CVAL('CURRDRV'))

Returns the current drive. The drive is in X: format with the drive letter followed by a colon.

7.4.11.17 CURRENCY

(CVAL('CURRENCY'))

The CURRENCY data type holds monetary values of up to 23 digits represented in the currency format,
established using SET CURRENCY. Amounts are in the range ±$99,999,999,999,999.99. Commas or the
current delimiter can be used. If no decimal point is included, .00 is assumed.

Data is stored as two long integer values, reserving four bytes of internal storage.

7.4.11.18 CURRENTPRINTER

(CVAL('CURRENTPRINTER'))

This parameter returns the current printer for the R:BASE session.

R:BASE Database Functions 379

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.19 DATABASE

(CVAL('DATABASE'))

Returns a text string containing the current connected database or NULL if the user is not connected to a
database. This can be used to ensure that the user is connected before trying to execute some code. The
example below shows how this might work.

SET VAR vDB = (CVAL('database'))

IF vDB IS NULL THEN
 CONN MyDB

ENDIF

SET VAR vDB = (CVAL('database'))

IF vDB IS NULL THEN

 PAUSE 2 USING 'MyDB is currently unavailable'

ENDIF

The check is repeated to ensure that the attempt to connect to the database was successful before
continuing with the command file.

7.4.11.20 DATE

(CVAL('DATE'))

Returns the DATE format of the currently connected database.

7.4.11.21 DATE CENTURY

(CVAL('DATE CENTURY'))

Returns the default DATE CENTURY of the currently connected database.

7.4.11.22 DATE FORMAT

(CVAL('DATE FORMAT'))

Returns the default DATE FORMAT of the currently connected database.

7.4.11.23 DATE SEQUENCE

(CVAL('DATE SEQUENCE'))

Returns the default DATE SEQUENCE of the currently connected database.

7.4.11.24 DATE YEAR

(CVAL('DATE YEAR'))

Returns the default DATE YEAR of the currently connected database.

7.4.11.25 DBCOMMENT

(CVAL('DBCOMMENT'))

DBCOMMENT returns the comment for the current connected database.

Oterro 11 Help Manual380

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.26 DBPATH

(CVAL('DBPATH'))

DBPATH returns the full path to the current connected database.

7.4.11.27 DEBUG

(CVAL('DEBUG'))

Returns the status of the DEBUG command parameter(ON/OFF).

7.4.11.28 DELIMIT

(CVAL('DELIMIT'))

Returns the value of the DELIMIT character setting.

7.4.11.29 DRIVES

(CVAL('DRIVES'))

Returns the list of all currently available drives

Example:

SET VAR vDrives = (CVAL('Drives'))

vDrives will include the list of ALL drives!

Result: aCDeF

In that list of drives, drives with CAPITAL letters, such as C,D or F would be the hard disk drive, and
drives with lower case letters would be removable drives, such as a or e.

a = floppy disk drive
C = Hard Disk
D = Hard Disk/CD-ROM/DVD
e = zip disk
F = Hard Disk/CD-ROM/DVD or even mapped network drive

All hard drives, including CD-ROM/DVD and network mapped drives would be CAPITAL letters.

All removable drives, including floppy disk drives and zip drives would be lower case letters.

7.4.11.30 ECHO

(CVAL('ECHO'))

Returns the status of the ECHO command parameter (ON/OFF).

7.4.11.31 EDITOR

(CVAL('EDITOR'))

Returns the current text editor used by R:BASE.

The default editor is RBEDIT.

R:BASE Database Functions 381

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.32 EOFCHAR

(CVAL('EOFCHAR'))

Returns the status of the EOFCHAR command parameter (ON/OFF).

7.4.11.33 EQNULL

(CVAL('EQNULL'))

Returns the status of the EQNULL command parameter (ON/OFF).

7.4.11.34 ERROR

(CVAL('ERROR'))

Returns the status of the ERROR MESSAGES display control (ON/OFF).

7.4.11.35 ERROR DETAIL

(CVAL('ERROR DETAIL'))

When an -ERROR- occurs now you can track additional information including the name of the file being
run and the byte offset within the file. If the thing being run is a procedure it saves information on the
select used to fetch the procedure too. We have implemented a new method of simple "stack" to keep
the last three errors. To see the information tracked use this new CVAL option.

SET VAR vError = (CVAL('ERROR DETAIL'))

Each time you call this particular CVAL function the stack pointer decrements so successive calls allow
you to see all three errors. Call it a fourth time and you will see the first one again, etc.

7.4.11.36 ERROR VARIABLE

(CVAL('ERROR VARIABLE'))

Returns the value of the current ERROR VARIABLE.

7.4.11.37 ESCAPE

(CVAL('ESCAPE'))

Returns the status of the ESCAPE command parameter (ON/OFF).

7.4.11.38 EXPLODE

(CVAL('EXPLODE'))

Returns the status of the EXPLODE command parameter (ON/OFF).

Used with R:BASE for DOS only. When EXPLODE is set on, dialog boxes are displayed in full size
instantly. When EXPLODE is set off, dialog boxes are displayed in an expanding fashion from the center.

7.4.11.39 FASTFK

(CVAL('FASTFK'))

Returns the status of the FASTFK command parameter (ON/OFF).

Oterro 11 Help Manual382

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.40 FASTLOCK

(CVAL('FASTLOCK'))

Returns the status of the FASTLOCK command parameter (ON/OFF).

7.4.11.41 FEEDBACK

(CVAL('FEEDBACK'))

Returns the status of the FEEDBACK command parameter (ON/OFF).

7.4.11.42 FILES

(CVAL('FILES'))

Returns the value of the FILES operating condition.

7.4.11.43 FIXED

(CVAL('FIXED'))

Returns the status of the FIXED command parameter (ON/OFF).

7.4.11.44 HEADINGS

(CVAL('HEADINGS'))

Returns the status of the HEADINGS display control (ON/OFF).

7.4.11.45 IDQUOTES

(CVAL('IDQUOTES'))

Returns the value of the IDQUOTES character setting.

7.4.11.46 INSERT

(CVAL('INSERT'))

Returns the status of INSERT display control (ON/OFF).

7.4.11.47 INTENSITY

(CVAL('INTENSITY'))

Returns the status of INTENSITY display control (ON/OFF).

Used with R:BASE 6.5++ for Windows only.

7.4.11.48 INTERVAL

(CVAL('INTERVAL'))

Returns value of the INTERVAL command parameter (ON/OFF).

R:BASE Database Functions 383

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.49 LAST BLOCK TABLE

(CVAL('LastBlockTable'))

Tells you which table holds the last block in File 2.

If the last block table contains significant dead space, packing it should free up space at the end of File 2.

7.4.11.50 LAST ERROR

(CVAL('LAST ERROR'))

This is an alternative to the current ERROR VARIABLE system of -ERROR- trapping. Something more
along the lines of an error variable which must be EXPLICITLY CLEARED.

Why? The current system does not allow error trapping in nested code segments or large blocks of code.
Furthermore, since the -ERROR variable is automatically cleared after each command, it requires error
trapping logic immediately after each command.

7.4.11.51 LAYOUT

(CVAL('LAYOUT'))

Returns the status of the LAYOUT display control (ON/OFF).

7.4.11.52 LINEEND

(CVAL('LINEEND'))

Returns the value of the LINEEND character setting.

7.4.11.53 LINES

(CVAL('LINES'))

Returns value of the LINES display control.

7.4.11.54 LOOKUP

(CVAL('LOOKUP'))

Returns the value of the LOOKUP command parameter (ON/OFF).

7.4.11.55 MANOPT

(CVAL('MANOPT'))

Returns value of the MANOPT command parameter (ON/OFF).

7.4.11.56 MANY

(CVAL('MANY'))

Returns the value of the MANY character setting.

Oterro 11 Help Manual384

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.57 MAXTRANS

(CVAL('MAXTRANS'))

Returns value of the MAXTRANS operating condition.

7.4.11.58 MDI

(CVAL('MDI'))

Returns the value of the MDI operating condition (ON/OFF).

7.4.11.59 MESSAGES

(CVAL('MESSAGES'))

Returns the status of the MESSAGES display control (ON/OFF).

7.4.11.60 MIRROR

(CVAL('MIRROR'))

Returns the value of the MIRROR operating condition.

7.4.11.61 MULTI

(CVAL('MULTI'))

Returns the value of the MULTI operating condition (ON/OFF).

7.4.11.62 NAME

(CVAL('NAME'))

Returns the currently logged-in R:BASE user NAME.

7.4.11.63 NETUSER

(CVAL('NETUSER'))

Returns the currently logged-in network user name.

7.4.11.64 NOTE_PAD

(CVAL('NOTE_PAD'))

Returns value of the NOTE_PAD operating condition.

7.4.11.65 NULL

(CVAL('NULL'))

Returns the value of the NULL character setting.

7.4.11.66 OFFMESS

(CVAL('OFFMESS'))

Return a text string, separated by a comma, with a list of all turned off -ERROR- message numbers in a
current R:BASE session.

R:BASE Database Functions 385

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.67 OLDLINE

(CVAL('OLDLINE'))

Returns the value of the OLDLINE operating condition (ON/OFF).

Used with R:BASE 6.5++ for Windows only. Allows the ability to have presentation objects, such as lines,
cross multiple sections in Reports.

7.4.11.68 ONELINE

(CVAL('ONELINE'))

Returns the value of the ONELINE operating condition (ON/OFF).

Used with R:BASE for DOS only. When set to ON NOTE and TEXT fields will never wrap to the next line in
Reports and SELECTS. Instead they will be truncated at the end of the column.

7.4.11.69 PAGEMODE

(CVAL('PAGEMODE'))

Returns the value of the PAGEMODE operating condition (ON/OFF).

7.4.11.70 PASSTHROUGH

(CVAL('PASSTHROUGH'))

Returns the value of the PASSTHROUGH operating condition (ON/OFF).

7.4.11.71 PLATFORM

(CVAL('PLATFORM'))

Returns 16 or 32 and WIN or DOS based on what R:BASE can determine about the Operating System.
This may be complicated by using the Windows options which hide Windows from DOS programs.

7.4.11.72 PLUS

(CVAL('PLUS'))

Returns the value of the PLUS character setting.

7.4.11.73 POSFIXED

(CVAL('POSFIXED'))

Returns the value of the POSFIXED operating condition.

7.4.11.74 PORTS

(CVAL('PORTS'))

Returns the list of all available ports, separated by comma, on that workstation.

Example:

SET VAR vAvailablePorts = (CVAL('PORTS'))
SHOW VARIABLE vAvailablePorts

Will return the text string with a list of all ports that are available on that workstation. Each item in the list
will be separated by comma (or the database character settings for comma).

Oterro 11 Help Manual386

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.75 PRINTERS

(CVAL('PRINTERS'))

Returns the list of all installed printers.

7.4.11.76 PRN_STATUS

(CVAL('PRN_STATUS'))

Captures the printer status.

7.4.11.77 PRN_ORIENTATION

(CVAL('PRN_ORIENTATION'))

Captures the printer orientation.

7.4.11.78 PRN_SIZE

(CVAL('PRN_SIZE'))

Captures the printer paper size.

7.4.11.79 PRN_SOURCE

(CVAL('PRN_SOURCE'))

Captures the printer paper source.

7.4.11.80 PRN_QUALITY

(CVAL('PRN_QUALITY'))

Captures the printer print quality (DPI).

7.4.11.81 PRN_COPIES

(CVAL('PRN_COPIES'))

Captures the printer copy count.

7.4.11.82 PRN_COLORMODE

(CVAL('PRN_COLORMODE'))

Captures the printer color mode.

7.4.11.83 PRN_DUPLEXMODE

(CVAL('PRN_DUPLEXMODE'))

Captures the printer duplex mode.

7.4.11.84 PRN_COLLATION

(CVAL('PRN_COLLATION'))

Captures the printer collation.

R:BASE Database Functions 387

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.85 QUALCOLS

(CVAL('QUALCOLS'))

Returns the value of the QUALCOLS operating condition.

7.4.11.86 QUALKEYS

(CVAL('QUALKEYS'))

Returns the columns assigned as a QualKeys for the current database.

7.4.11.87 QUALKEY TABLES

(CVAL('QUALKEY TABLES'))

Returns the tables assigned with QualKey columns for the current database.

7.4.11.88 QUOTES

(CVAL('QUOTES'))

Returns the value of the QUOTES character setting.

7.4.11.89 REFRESH

(CVAL('REFRESH'))

Returns the value of the REFRESH operating condition.

7.4.11.90 REVERSE

(CVAL('REVERSE'))

Returns the value of the REVERSE operating condition.

7.4.11.91 ROWLOCKS

(CVAL('ROWLOCKS'))

Returns the value of the ROWLOCKS operating condition.

7.4.11.92 RULES

(CVAL('RULES'))

Returns the value of the RULES operating condition.

7.4.11.93 SCRATCH

(CVAL('SCRATCH'))

Returns the value of the SCRATCH operating condition.

7.4.11.94 SCREENSIZE

(CVAL('SCREENSIZE'))

Returns the Screen Area in Pixels

Oterro 11 Help Manual388

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.95 SELMARGIN

(CVAL('SELMARGIN'))

Returns the value of the SELMARGIN operating condition.

7.4.11.96 SEMI

(CVAL('SEMI'))

Returns the value of the SEMI operating condition.

7.4.11.97 SERVER

(CVAL('SERVER'))

Returns the value of the SERVER operating condition.

7.4.11.98 SINGLE

(CVAL('SINGLE'))

Returns the value of the SINGLE operating condition.

7.4.11.99 SORT

(CVAL('SORT'))

Returns the value of the SORT operating condition.

7.4.11.100SORTMENU

(CVAL('SORTMENU'))

Returns the value of the SORTMENU operating condition.

7.4.11.101STATICDB

(CVAL('STATICDB'))

Returns the value of the STATICDB operating condition.

7.4.11.102TIME

(CVAL('TIME'))

Returns the TIME format of the currently connected database.

7.4.11.103TIME FORMAT

(CVAL('TIME FORMAT'))

Returns the default TIME FORMAT of the currently connected database.

7.4.11.104TIME SEQUENCE

(CVAL('TIME SEQUENCE'))

Returns the default TIME SEQUENCE of the currently connected database.

7.4.11.105TIMEOUT

(CVAL('TIMEOUT'))

Returns the value of the TIMEOUT operating condition.

R:BASE Database Functions 389

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.106TOLERANCE

(CVAL('TOLERANCE'))

Returns the value of the TOLERANCE operating condition.

7.4.11.107TRACE

(CVAL('TRACE'))

Returns the status of the TRACE command parameter (ON/OFF).

7.4.11.108TRANSACT

(CVAL('TRANSACT'))

Returns the value of the TRANSACT operating condition.

7.4.11.109USER

(CVAL('USER'))

Returns the R:BASE USER identifier.

7.4.11.110USERAPP

(CVAL('USERAPP'))

Returns the file extensions to be displayed in the Object Manager.

Used with R:BASE 6.5++ for Windows only. You can specify which files display in the Object Manager
after you click the Apps tab. Your choices are saved in the RBASE.CFG file. You can specify a maximum
of three extensions.

7.4.11.111USERDOMAIN

(CVAL('USERDOMAIN'))

Returns the Name of Logged-In Network Domain.

7.4.11.112USERID

(CVAL('USERID'))

Returns the Windows User ID.

7.4.11.113VERIFY

(CVAL('VERIFY'))

Returns the value of the VERIFY operating condition.

7.4.11.114VERSION

(CVAL('VERSION'))

The VERSION parameter of the SHOW command can be used to determine the exact version as well as
the build number of the R:BASE Engine. This can also be used with CVAL to store the version as well as
build number information in a variable.

See also:
(CVAL('BUILD')) to determine the exact build number of the R:BASE Front-End GUI

Oterro 11 Help Manual390

Copyright © 1982-2024 R:BASE Technologies, Inc.

(CVAL('VERSION BUILD')) to determine only the build number of the R:BASE Engine

7.4.11.115VERSION BITS

(CVAL('VERSION BITS')

Returns 16 or 32. At this time there are no versions of R:BASE that we can recommend running on 16 bit
systems and as such this will always return 32.

7.4.11.116VERSION BUILD

(CVAL('VERSION BUILD'))

Returns only the current build number of the R:BASE Engine. This can be useful in determining which
features are available to you. This can also be used with CVAL to store the build number build number of
the R:BASE Engine in a variable.

See also:
(CVAL('BUILD')) to determine the exact build number of the R:BASE Front-End GUI
(CVAL('VERSION')) to determine the version as well as build number of R:BASE Engine

7.4.11.117VERSION SYSTEM

(CVAL('VERSION SYSTEM'))

Returns the value WIN or DOS.

7.4.11.118WAIT

(CVAL('WAIT'))

Returns the value of the WAIT operating condition.

7.4.11.119WALKMENU

(CVAL('WALKMENU'))

Returns the value of the WALKMENU operating condition.

7.4.11.120WHILEOPT

(CVAL('WHILEOPT'))

Returns the value of the WHILEOPT operating condition (ON/OFF).

7.4.11.121WIDTH

(CVAL('WIDTH'))

Returns the value of the WIDTH operating condition.

7.4.11.122WINBEEP

(CVAL('WINBEEP'))

Returns the value of the WINBEEP operating condition.

7.4.11.123WINDOWSPRINTER

(CVAL('WINDOWSPRINTER'))

This parameter returns the windows default printer.

R:BASE Database Functions 391

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.4.11.124WRAP

(CVAL('WRAP'))

Returns the value of the WRAP operating condition (ON/OFF).

7.4.11.125WRITECHK

(CVAL('WRITECHK'))

Returns the value of the WRITECHK operating condition (ON/OFF).

7.4.11.126ZERO

(CVAL('ZERO'))

Returns the value of the ZERO operating condition (ON/OFF).

7.4.11.127ZOOMEDIT

(CVAL('ZOOMEDIT'))

Returns the value of the ZOOMEDIT operating condition (ON/OFF).

7.4.12 CVTYPE

(CVTYPE('colvarname',flag))

Returns the data type for a given column or variable name.

To return the data type for a given column, a zero "0" flag must be used. To return the data type for a
given variable, the one "1" flag must be used.

After connecting to ConComp or RRBYW14, try the following two examples at the R> Prompt:

Example 01.

SET VAR vCustIDType TEXT = (CVTYPE('CustID',0))
SET VAR vEmpCity TEXT = (CVTYPE('EmpCity',0))

SHOW VARIABLES

vCustIDType = INTEGER TEXT
vEmpCity = TEXT,16 TEXT

Example 02.

SET VAR vCustIDType TEXT = (CVTYPE('CustID',0))
SET VAR vVarInquiry TEXT = (CVTYPE('vCustIDType',1))

SHOW VARIABLES

vCustIDType = INTEGER TEXT
vVarInquiry = TEXT,7 TEXT

NOTES:

· When using the zero flag to return column data types, you must be connected to a database.

· When returning a TEXT data type, the length is included and is separated with a comma. When
returning a NUMERIC data type, the precision and scale are separated with commas.

Oterro 11 Help Manual392

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.5 D

7.5.1 DATETIME

(DATETIME(date,time))

Concatenates date and time variables or constants.

The following expression concatenates the #DATE and #TIME values into a variable (vdatetime) that has
a DATETIME data type.

SET VAR vdatetime=(DATETIME(.#DATE,.#TIME))

7.5.2 DECRYPT

(DECRYPT('string','password'))

Returns the original string that was encrypted using the ENCRYPT function. A password must be specified
to return the original string.

SET VAR vDecryptNumber TEXT =
(DECRYPT('1CCF2D7B795D4317475B5144154A','laser'))
SHOW VAR vDecryptNumber
7247330053

If the password specified with DECRYPT is not correct, the result will be a NULL valued string.

7.5.3 DELFUNC

(DELFUNC('function_name'))

Deletes a declared DLL function. If the DLL function is successfully deleted, a 1 is returned. If the DLL
function is not deleted, a 0 is returned.

 Example:

 SET VAR v1 = (DELFUNC('FunctionName'))

7.5.4 DEXTRACT

(DEXTRACT(datetime))

Returns the date portion of a value that has a DATETIME data type.

In the following example, the value of vdextract is 06/12/93.

SET VAR vdextract = (DEXTRACT('06/12/93 12:15:30.123'))

7.5.5 DIM

(DIM(arg1,arg2))

Returns the positive difference between arg1 and arg2. Arg1 must be a value with a DOUBLE, REAL,
NUMERIC, or INTEGER data type. Arg2 must be any value with a DOUBLE, REAL, NUMERIC, or INTEGER
data type other than 0. The result is always positive or zero. If the result is less than or equal to zero,
DIM returns 0.

In the following example, the value of vdim1 is 0; vdim2 is 2; vdim3 is 2; vdim4 is 0.

R:BASE Database Functions 393

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET VAR vdim1 = (DIM(2,4))
SET VAR vdim2 = (DIM(4,2))
SET VAR vdim3 = (DIM(-2,-4))
SET VAR vdim4 = (DIM(-4,-2))

7.5.6 DLCALL

The DLCALL Function calls any Windows dynamic link library (DLL) and loads it into memory for use with
R:BASE.

Syntax for External DLL:

(DLCALL('libraryname.ext', 'FunctionOrProcedureName', [arg],[arg],[.....]))

Syntax for Windows API:

(DLCALL('libraryname', 'FunctionOrProcedureName', [arg],[arg],[.....]))

External DLLs must have the file name listed with the extension, such as 'MyLibrary.dll'.

Windows APIs require only the name of the Library, without the extension, such as: 'Kernel32' or
'User32'.

The DLLs must be created as Standard Windows 32-bit DLLs. Any number of functions or procedures can
be used in a single DLL. Functions or Procedures to be used with DLCALL must be Exported in the DLL. No
special code is necessary in the DLL for it to be used by R:BASE.

DLL Location:

DLLs can be located in the Legal Windows Search Path, and if elsewhere, then specify the FullPathName
in DLLoad.

Search Path Used by Windows to Locate a DLL

With both implicit and explicit linking, Windows first searches for "known DLLs", such as Kernel32.dll
and User32.dll. Windows then searches for the DLLs in the following sequence:

1. The directory where the executable module for the current process is located.
2. The current directory.
3. The Windows system directory. The GetSystemDirectory function retrieves the path of this

directory.
4. The Windows directory. The GetWindowsDirectory function retrieves the path of this directory.
5. The directories listed in the PATH environment variable.

When or If DLLOAD is Used:

DLLOAD may be called "anytime" during the Session to Load the Library into Memory OR as a
subsequent call to determine if the Library is Loaded.

In any event, DLLOAD is called internally when the Library is first referenced by DLCALL, and THEN the
Library remains in memory until either the R:BASE session is ended OR DLFREE is called.

Data Type Rules:

Data types in the functions must be of the same storage size as the corresponding R:BASE data types.

Example: 32-bit Win32 Integer = 4 bytes of storage vs 32-bit R:BASE Integer = 4 bytes of
storage

Oterro 11 Help Manual394

Copyright © 1982-2024 R:BASE Technologies, Inc.

Declaration Logic:

Calls to a function OR procedure from ANY DLL must be declared at Least ONCE in the session in which
they will be referenced.

Two Calling Conventions are supported, using the STDCALL and CDECL Keyword in the Declaration.

STDCALL

Function Declaration using STDCALL:

STDCALL FUNCTION 'functionName' (PTR VARCHAR (SIZE),) : VARCHAR (SIZE)
STDCALL FUNCTION 'functionName' ALIAS 'functionAliasName' (PTR TEXT
(SIZE),) : TEXT (SIZE)

Procedure Declaration using STDCALL:

STDCALL VOID FunctionOrProcedureThatHasNoReturnValue (PTR TEXT (SIZE))

Windows API Declaration using STDCALL:

STDCALL FUNCTION 'GetCurrentDirectoryA' ALIAS 'GetCurrentDir' (PTR TEXT, INTEGER)
: INTEGER

CDECL

Function Declaration using CDECL:

CDECL FUNCTION 'functionName' (INTEGER) : INTEGER
CDECL FUNCTION 'functionName' ALIAS 'functionAliasName' (PTR DOUBLE) : DOUBLE

Procedure Declaration using CDECL

CDECL VOID FunctionOrProcedureThatHasNoReturnValue (PTR TEXT (SIZE))

Parameters

'SIZE' applies to TEXT and VARCHAR data types.

Important Notes:

A. Parameters in the Declaration are in the REVERSE order from the Actual Function or Procedure in
the DLL.
Parameters can be 0 to n Parameters of any legal R:BASE Datatype.

B. Function Names ARE CASE SENSITIVE in the DECLARATION ONLY.
The Case must match the casing used in the DLL.
Case is INSENSITIVE when used in DLCALL.

Remarks:

· For best results, TEXT and VARCHAR data should be passed with the PTR (Pointer) Attribute and ANY
VARCHAR data type Larger than 32K as a Parameter, MUST be passed as PTR.

R:BASE Database Functions 395

Copyright © 1982-2024 R:BASE Technologies, Inc.

· VARCHAR data type as a Return Value restricted to 32K, but Any SIZE up to 256MB can be passed
as a Pointer to the R:BASE Variable. Modification of the Data Passed as Pointer must be on the data
pointed to.

· It is important that the SIZE parameter on TEXT and VARCHAR be Specified to avoid creating
excess buffer space that has to be created from the Declaration.

For Example:

If the Function is Declared like this:

STDCALL function 'somefunction' (ptr varchar (nn)) : integer
Then nn <= 256Mb.

If the Function is Declared like this:

STDCALL function 'somefunction' (ptr varchar) : integer
Then because SIZE is omitted, the buffer for VARCHAR will have default SIZE = 256MB.
* AVOID THIS UNLESS THAT IS THE ACTUAL SIZE OF THE DATA TO BE PASSED!

If the Function is Declared like this:

STDCALL function 'somefunction' (integer) : varchar(nn)
Then because SIZE is Specified, nn bytes <= 32K will be returned.

If the Function is Declared like this:

STDCALL function 'somefunction' (integer) : varchar
Then because SIZE is omitted, the buffer for VARCHAR will have default SIZE = 32K.

When SIZE is Specified, the data passed as parameter or as return value, if Greater than the SIZE, will
be truncated to SIZE.

Example of a DLL created in Delphi exporting three functions:

// Begin Dll Code
library DemoLib;

uses
 SysUtils, Classes;

{$R *.res}

function MultInt (NumIN : Integer) : Integer; stdcall;
begin
 Result := (NumIN * 2);
end;

function MultDbl (NumDbl : Double) : Double; stdcall;
begin
 Result := (NumDbl * 2);
end;

procedure LCaseByREF(DataIN : PChar); stdcall;
begin
 ansiStrLower(DataIN);
end;

function LCaseByVAL (DataIN : PChar) : PChar; Stdcall;
begin
 Result := ansiStrLower(DataIN);
end;

Oterro 11 Help Manual396

Copyright © 1982-2024 R:BASE Technologies, Inc.

Exports MultInt, LCaseByREF, LCaseByVAL;

begin

end.
// End Dll Code

Example Usage From Within R:BASE:

-- BEGIN Demo.rmd
-- Declare the functions to be used from the DLL
STDCALL function 'MultInt' (Integer) : Integer
STDCALL VOID 'LCaseByREF' (ptr TEXT (30))
STDCALL function 'LCaseByVAL (ptr TEXT (60)) : TEXT (60)

--Set somme variables for use
Set VAR vTEXT TEXT = 'RBASE TECHNOLOGIES'
SET VAR vINT INTEGER = 128
SET VAR v1 INTEGER = 0

-- OPTIONALLY CALL DLLOAD
SET VAR v1 = (DLLOAD('DemoLib.dll'))
IF v1 = 0 THEN
 PAUSE 2 USING 'DemoLib.dll NOT LOADED.. EXITING'
 RETURN
ENDIF

SET VAR V1 = (dlcall('demolib.dll', 'changecase', vtext))

{ The Value for v1 will be null because ChangeCase is a procedure and
doesn't
 RETURN A RESULT, but the value of vTEXT which is passed as a POINTER has
been
 changed to 'rbase technologies'}

SET VAR v1 = (DLCALL('demolib.dll', 'MultInt', vINT))

--The value for v1 will be 256 the value returned from the function.

-- running the following against RRBYW14
SELECT (DLCALL('demolib.dll','lcasebyval', Company))=60 FROM +
Customer WHERE LIMIT = 2

{Yields the following output:
 (DLCALL('demolib.dll','lcasebyval', Company)
 --
 computer warehouse - ii
 microtech university - i
}

SELECT ((ICAP2((DLCALL('demolib.dll','lcasebyval', Company))))) = 60 +
FROM Customer WHERE LIMIT = 2

R:BASE Database Functions 397

Copyright © 1982-2024 R:BASE Technologies, Inc.

{Yields the following otput:
 ((ICAP (DLCALL('demolib.dll','lcasebyval',
 --
 Computer Warehouse - Ii
 Microtech University - I
}

-- Optionally CALL DLFREE
SET VAR v1 = (DLFREE('DemoLib.dll'))

-- END Demo.rmd

Example of a DLL created in C++ Exporting three functions:

// BEGIN C++ DLL
// loaddll.cpp : Defines the entry point for the DLL application.
//
#include <windows.h>
#include <stdio.h>

BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 return TRUE;
}
#ifdef __cplusplus // If used by C++ code,
extern "C" { // we need to export the C interface
#endif

__declspec(dllexport) int cfunc1(int i){
 return i;
}
__declspec(dllexport) double cfunc2(double *inp){
 double rtn = *inp;
 rtn++;
 return rtn;
}
__declspec(dllexport) char * cfunc3(char *inp){
 strcat(inp," + ");
 return inp;
}

#ifdef __cplusplus
}
#endif

// END C++ DLL

See Also:

CHKFUNC

Oterro 11 Help Manual398

Copyright © 1982-2024 R:BASE Technologies, Inc.

DELFUNC
DLLOAD
DLFREE

Special thanks to:
Mike Byerley (Fort Wayne, Indiana), an Authorized R:BASE Developer, for his contribution to the
introduction, implementation and testing of the DLCALL Function in R:BASE.

7.5.7 DLFREE

(DLFREE('libraryname.ext'))

Checks to see if a given library file can be freed.

The function returns an integer value of 1 if the library is freed and 0 if a given library is not freed.

Example:

SET VARIABLE vFreePlugin = (DLFREE('RCharts95.RBM'))

See Also:

CHKFUNC
DELFUNC
DLLCALL
DLLOAD

7.5.8 DLLOAD

(DLLOAD('libraryname.ext'))

Checks to see if a given library file is loaded.

The function returns an integer value of 1 if the library is loaded and 0 if a given library is not loaded.

Example:

SET VARIABLE vLoadPlugin = (DLLOAD('RCharts95.RBM'))

See Also:

CHKFUNC
DELFUNC
DLLCALL
DLFREE

7.5.9 DNW

(DNW(date))

Returns the date value for the next working (business) day.

This fuction recognizes Monday through Friday as business days and does not recognize Saturday or
Sunday. Holidays are not considered.

R:BASE Database Functions 399

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.5.10 DWE

(DWE(date))

Returns the date value for the next weekend day.

This fuction recognizes Saturday or Sunday as weekend days and does not recognize Monday through
Friday. Holidays are not considered.

7.5.11 DWRD

(DWRD(value))

Converts a currency value to its word representation. For example, (DWRD($100.50)) returns "one
hundred dollars and fifty cents."

7.6 E

7.6.1 ENCRYPT

(ENCRYPT('string','password'))

Returns an encrypted string of HEX characters, which is twice as long as the original string, plus 8 more
characters. A password must be specified to use with the DECRYPT function in order to return the original
string.

SET VAR vEncrptNumber TEXT = (ENCRYPT('7247330053','laser'))
SHOW VAR vEncrptNumber
1CCF2D7B795D4317475B5144154A

Once a value is encrypted, users cannot tell what the value is by selecting the raw encrypted value. If a
form retrieves the encrypted value, it can then call the DECRYPT function the value to get the original
value.

7.6.2 ENVVAL

(ENVVAL('environmentvar'))

Returns the current value of the specified DOS environment variable. You must either enclose the name
of the environment variable in quotation marks or use a text variable to which you have assigned the
environment variable.

First, assume you have the command below in your AUTOEXEC.BAT file.

SET workstat=10

Now, in R:BASE, you can use ENVVAL to find the value of that environment variable, as shown in the
example below. The value of vworkstat will be the text value 10.

SET VAR vworkstat = (ENVVAL('workstat'))

7.6.3 EXP

(EXP(arg))

Raises e to the arg power (where e = 2.71828182845905 and arg is any value with a DOUBLE, REAL,
NUMERIC, or INTEGER data type). By raising e to an exponent, EXP performs the inverse operation of
LOG.

In the following example, the value of vexp is 2.71828182845905.

Oterro 11 Help Manual400

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET VAR vexp = (EXP(1))

7.7 F

7.7.1 FILENAME

(FILENAME(0))

Generates a unique filename with a .$$$ extension, and creates the file in the current directory.

7.7.2 FINDFILE

(FINDFILE('filename'))

Returns the location of a file. The function looks first in the current directory and then searches the DOS
path for the file. If the file is found, the full path name is returned, if it isn't found, a NULL is returned.
Wildcards in the filename will produce unpredictable results.

7.7.3 FLOAT

(FLOAT(arg))

Converts a number with a TEXT, INTEGER, or CURRENCY data type to a value with a REAL or DOUBLE
data type. This is not the same as the FLOAT data type.

In the following example, the value of vfloat1 is 2., a number that has a REAL data type, and the value of
vfloat2 is also 2., a number that has a DOUBLE data type. If a variable is not assigned a data type, it
becomes DOUBLE.

SET VAR vfloat1 REAL = (FLOAT(2))
SET VAR vfloat2 = (FLOAT(2))

7.7.4 FORMAT

(FORMAT (value,'picture-format'))

Prints picture formats to a variable, rather than only to the screen. You can use FORMAT anywhere that
you can use a function. The result of the FORMAT function is always text.

In the syntax for this function, value is the value you want to be displayed in a particular format; it can
be a column, variable, or a constant value. 'Picture-format' is the picture format you establish.

The FORMAT function can be useful in several ways:

· Aligning decimals

· Punctuating long numbers

· Formatting currency

· Formatting text

The characters you can use to format your data are listed below.

For All Data

[<] Data is left justified.

[>] Data is right justified.

[^] Data is centered.

For Numbers

[-] Places a minus sign to the right of a negative number.

[DB] Places DB to the right of a negative number.

[()] Encloses a negative number in parentheses.

[CR] Places CR to the right of a positive number.

R:BASE Database Functions 401

Copyright © 1982-2024 R:BASE Technologies, Inc.

9 Fills unused space with blanks.

0 Fills unused space with zeros.

* Fills unused space with asterisks.

For Text

_ Letters are uppercase; other characters are blank.

| Letters are lowercase; other characters are blank.

% Letters are uppercase; other characters are unchanged.

? Letters are lowercase; other characters are unchanged.

7.7.4.1 Aligning Decimals

The following example shows how you can use the FORMAT function to align decimal points in a column:

SELECT (FORMAT(bonuspct,'99.000')) FROM salesbonus

The following example shows the effect of the FORMAT function on the above SELECT statement:

Using FORMAT Without FORMAT

0.003 0.003

0.002 0.002

0.000 0

0.001 0.001

7.7.4.2 Formatting Currency

The following example shows how you can use the FORMAT function to only display whole dollars:

SELECT (FORMAT(netamount,'[>]$999,999')) FROM salesbonus

This SELECT statement displays data as right justified whole dollars, as shown below:

Using FORMAT Without FORMAT

$176,000 $176,000.00

$87,500 $87,000.00

7.7.4.3 Formatting Text

You must include a format character for each text character. The following example shows how you can
use the FORMAT function to display text in uppercase:

SELECT (FORMAT(empfname,'________')) FROM employee

Using FORMAT Without FORMAT

JUNE June

ERNEST Ernest

PETER Peter

7.7.4.4 Punctuating Long Numbers

The following example shows how you can use the FORMAT function to include a comma after the
thousand's place:

SELECT (FORMAT(transid,'999,999')) FROM transmaster

The following shows the effect of the FORMAT function on the above SELECT statement:

Using FORMAT Without FORMAT

Oterro 11 Help Manual402

Copyright © 1982-2024 R:BASE Technologies, Inc.

104 104

2,002 2002

39,765 39765

7.7.5 FV1

(FV1(pmt,int,per))

Returns the future value of a series of equal payments of the amount, pmt, periodic interest rate, int, and
compounding periods, per.

In the following example, FV1 returns the ending balance in your savings account if you deposit $300
each month for four years with an annual interest rate of 6.25%. The value of vfv1 (the balance) is
$16,311.90.

SET VAR vfv1 = (FV1(300,(.0625/12),(4 *12)))

7.7.6 FV2

(FV2(pv,int,per))

Returns the future value of an amount, pv, invested at a periodic interest rate, int, for compounding
periods, per.

In the following example, FV2 returns your ending balance for a savings account where you have
deposited $1,800 with an annual interest rate of 5.5% compounded monthly (simple interest divided by
compounding periods) for seven years (12 periods times seven years). The value of vfv2 (the balance) is
$2,642.98.

SET VAR vfv2 = (FV2(1800,(.055/12),(7 *12)))

7.8 G

7.8.1 GETDATE

(GETDATE('Calendar Caption'))

Example:

In a command file, EEP or Custom Button

SET VAR vGetDate = (GETDATE('Select Date'))

Will bring up the Windows GUI Calendar with today's date circled in red. Either you could click on OK to
accept the circled date or click on any other date on the calendar using the current month or scrolling
months!

The GETDATE function will return a valid date in column or variable.

7.8.2 GETKEY

(GETKEY(0))

Gets the text value, in brackets, of the first key available in the type-ahead buffer. If a key is not
available, GETKEY waits for the next keystroke. Since R:BASE normally checks the buffer for the [Ctrl] +
[Break] keys, you must set ESCAPE to off for GETKEY to work properly. Use CHKKEY before GETKEY to
determine if a key is available. GETKEY does nothing with the zero that you enter in parentheses;
GETKEY returns a value without receiving one.

If you are executing a process that takes several minutes to complete, you can use the CHKKEY and
GETKEY functions to tell R:BASE what to do next, even while the process is executing.

R:BASE Database Functions 403

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.8.3 GETVAL

(GETVAL('arg1', 'arg2'))

Gets a value based on the argument data provided. The followng GETVAL arguments are available:

· CheckMessageStatus
· GetDriveReady
· GetIPAddress
· GetLock
· GetMACAddr
· GetVolumeID
· PlayAndExit
· PlayAndWait

7.8.3.1 CheckMessageStatus

(GETVAL('CheckMessageStatus','####'))

Example:

SET VAR vStatus TEXT = NULL
SET VAR vStatus = (GETVAL('CheckMessageStatus','2038'))

Variable vStatus will return the text value of the current message status (ON/OFF) for error message
2038.

7.8.3.2 GetDriveReady

(GETVAL('GetDriveReady','driveletter'))

Example:

SET VAR vReady = (GETVAL('GetDriveReady','A'))

Result: False if not ready, True if ready.

7.8.3.3 GetIPAddress

(GETVAL('GetIPAddress','n'))

Where 'n' is the parameter to either retrieve the number of active network adapters or to retrieve the IP
address of a given active network adapter. Use '0' to retrieve the number of active network adapters and
1-9 to retrieve the IP address(es) of active network adapter(s) of a given network workstation/server.

Example:

-- Start
-- GetIPAddress.RMD
CLS
CLEAR VARIABLE vActiveAdapters,vIPAddress1,vIPAddress2, +
vIPAddress3,vIPAddress4,vPauseMessage,vCaption
SET VAR vActiveAdapters TEXT = NULL
SET VAR vIPAddress1 TEXT = NULL

Oterro 11 Help Manual404

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET VAR vIPAddress2 TEXT = NULL
SET VAR vIPAddress3 TEXT = NULL
SET VAR vIPAddress4 TEXT = NULL
SET VAR vPauseMessage TEXT = NULL
SET VAR vCaption TEXT = 'Understanding New GETVAL Function'

-- To retrieve the number of active network adapters

SET VAR vActiveAdapters = (GETVAL('GetIPAddress','0'))

-- To retrieve the IP address of first active network adapter

SET VAR vIPAddress1 = (GETVAL('GetIPAddress','1'))

-- To retrieve the IP address of second active network adapter

SET VAR vIPAddress2 = (GETVAL('GetIPAddress','2'))

-- To retrieve the IP address of third active network adapter

SET VAR vIPAddress3 = (GETVAL('GetIPAddress','3'))

-- To retrieve the IP address of fourth active network adapter

SET VAR vIPAddress4 = (GETVAL('GetIPAddress','4'))

SET VAR vPauseMessage = +
('Number of Active Adapter(s):'+(CHAR(009))&.vActiveAdapters+ +
 (CHAR(009))+(CHAR(013))+ +
 'IP Address of Active Adapter 1:'+(CHAR(009))&.vIPAddress1+ +
 (CHAR(009))+(CHAR(013))+ +
 'IP Address of Active Adapter 2:'+(CHAR(009))&.vIPAddress2+ +
 (CHAR(009))+(CHAR(013))+ +
 'IP Address of Active Adapter 3:'+(CHAR(009))&.vIPAddress3+ +
 (CHAR(009))+(CHAR(013))+ +
 'IP Address of Active Adapter 4:'+(CHAR(009))&.vIPAddress4+ +
 (CHAR(009))+(CHAR(013)))

CLS
PAUSE 2 USING .vPauseMessage CAPTION .vCaption +
ICON APP +
Button 'Yes, this is the R:BASE you have always wanted!' +
OPTION BACK_COLOR WHITE +
|MESSAGE_COLOR WHITE +
|MESSAGE_FONT_COLOR GREEN +
|BUTTON_COLOR WHITE
CLS
CLEAR VARIABLE vActiveAdapters,vIPAddress1,vIPAddress2, +
vIPAddress3,vIPAddress4,vPauseMessage,vCaption
RETURN
-- end

7.8.3.4 GetLock

(GETVAL('GetLock','tableviewname'))

GetLock is the first required parameter and the table/view name is the name of the table or view. Use
this function to programmatically find the LOCK status of a table or view. The returning value is ON or
OFF, depending on whether a lock is in place upon the table or view.

Example:

SET VAR vCheclLock = (GETVAL('GetLock','Customer'))

R:BASE Database Functions 405

Copyright © 1982-2024 R:BASE Technologies, Inc.

vCheckLock will return the value of ON or OFF for the Customer table

7.8.3.5 GetMACAddr

Use (GETVAL('GetMACAddr','n')) to retrieve the number of active network adapter(s) on
workstation/server as well as the physical MAC (Media Access Control) address(es) of active network
adapter(s).

Media Access Control address is a physical hardware address that uniquely identifies each node of a
network. In IEEE 802 networks, the Data Link Control (DLC) layer of the OSI Reference Model is divided
into two sub-layers: the Logical Link Control (LLC) layer and the Media Access Control (MAC) layer. The
MAC layer interfaces directly with the network media. Consequently, each different type of network
media requires a different MAC layer.

Where 'n' is the parameter to either retrieve the number of active network adapters or to retrieve the
MAC address of given active network adapter. Use '0' to retrieve the number of active network adapters
and 1-9 to retrieve the MAC address of active network adapter(s) on given network station/server.

Examples:

Example 01: To get the number of active network adapter(s)

 SET VAR vActiveAdapters = (GETVAL('GetMACAddr','0'))

 The variable vActiveAdapters will return the number of active network adapters on that work
station/server.

Example 02: To retrieve the MAC address of first active adapter

 SET VAR vMACAddress = (GETVAL('GetMACAddr','1'))

 The variable vMACAddress will return the value of first active network adapter on that workstation.

Example 03: To retrieve the MAC address of second active adapter

 SET VAR vMACAddress = (GETVAL('GetMACAddr','2'))

 The variable vMACAddress will return the value of second active network adapter on that workstation.

Example 04: To retrieve the MAC address of third active adapter

 SET VAR vMACAddress = (GETVAL('GetMACAddr','3'))

 The variable vMACAddress will return the value of third active network adapter on that workstation.

Practically, this new (GETVAL('GetMACAddr','n')) function can be used to customize access to your
R:BASE for Windows Applications. Consequently, you can use this function to customize the properties
of any control and/or settings of form using the PROPERTY command based on unique MAC address of
workstation.

Example 05: Disabling/Hiding Application Menus based on MAC Address

Assuming your application includes 6 main menu options, namely Customers, Contacts, Employees,
Products, Sales, Quarterly Sales Reports, General Inquiry (Read Only) with Component IDs
MM_Customers, MM_Contacts, MM_Employees, MM_Products, MM_Sales, MMQuarterlyReports,
MM_GeneralInquiry accordingly.

Oterro 11 Help Manual406

Copyright © 1982-2024 R:BASE Technologies, Inc.

In a secure work environment, suppose only one workstation or notebook can have access to all
menus with MAC address 00-0D-43-2B-D6-B4 and everyone else can only access to General Inquiry
(Read Only) menu.

If you would like to disable Customers, Contacts, Employees, Products, Sales and Quarterly Sales
Report menus to all except the workstation or notebook with the MAC address 00-0D-43-2B-D6-B4,
then here's an example to use as embedded Custom EEP in "On After Start EEP" option of form
properties:

IF (GETVAL('GetMACAddr','1')) <> '00-0D-43-2B-D6-B4' THEN
 PROPERTY MM_Customers ENABLED 'FALSE'
 PROPERTY MM_Contacts ENABLED 'FALSE'
 PROPERTY MM_Employees ENABLED 'FALSE'
 PROPERTY MM_Products ENABLED 'FALSE'
 PROPERTY MM_Sales ENABLED 'FALSE'
 PROPERTY MM_QuarterlyReports ENABLED 'FALSE'
ENDIF
RETURN

If you would like to hide Customers, Contacts, Employees, Products, Sales and Quarterly Sales Report
menus to all except the workstation or notebook with the MAC address 00-0D-43-2B-D6-B4, then
here's an example to use as embedded Custom EEP in "On After Start EEP" option of form properties:

IF (GETVAL('GetMACAddr','1')) <> '00-0D-43-2B-D6-B4' THEN
 PROPERTY MM_Customers VISIBLE 'FALSE'
 PROPERTY MM_Contacts VISIBLE 'FALSE'
 PROPERTY MM_Employees VISIBLE 'FALSE'
 PROPERTY MM_Products VISIBLE 'FALSE'
 PROPERTY MM_Sales VISIBLE 'FALSE'
 PROPERTY MM_QuarterlyReports VISIBLE 'FALSE'
ENDIF
RETURN

7.8.3.6 GetVolumeID

(GETVAL('GetVolumeID','driveletter'))

Example:

SET VAR vVolumeID = (GETVAL('GetVolumeID','C'))

Will return the label name of drive C.

7.8.3.7 PlayAndExit

(GETVAL('PlayAndExit','filepath'))

Example:

SET VAR vPlay = (GETVAL('PlayAndExit','c:\windows\media\tada.wav'))

Will play sound/wave file and continue the next command in a command file or EEP.

R:BASE Database Functions 407

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.8.3.8 PlayAndWait

(GETVAL('PlayAndWait','filepath'))

Example:

SET VAR vPlay = (GETVAL('PlayAndWait','c:\windows\media\tada.wav'))

Will play sound/wave file and waits for the sound to finish before continue to a next command. This
could be a long time if the sound file is long. You would want this if, for instance, you're writing an
answering machine aplication in R:BASE for Windows.

7.9 H

7.9.1 HTML

(HTML(string))

Converts a text value to valid HTML code.

7.10 I

7.10.1 ICAP

(ICAP(arg))

Converts arg to a string with an initial capital letter on only the first word.

In the following example, the value of vicap is Mary is going to Murrysville.

SET VAR vicap = (ICAP('mary is going to Murrysville'))

7.10.2 ICAP1

(ICAP1(arg))

Converts arg to a string with an initial upper case letter on the first word, and lower case on an initial
capital letter on any following words. This is also knwon as Sentence Casing.

In the following example, the value of vicap1 is Mary went down the street.

SET VAR vicap1 = (ICAP1('mary went down The Street.'))

7.10.3 ICAP2

(ICAP2(arg))

Converts arg to a string with an initial capital letter on each word. This is also known as Word Case.

In the following example, the value of vicap2 is John Smith.

SET VAR vicap2 = (ICAP2('john smith'))

7.10.4 ICAP3

(ICAP3(arg))

Converts arg to a string with an initial upper case letter on the first word, and principal words. Non-
capitalized letters/words include articles (a, an, the), conjunctions (e.g., and, but, or), and prepositions
(e.g., on, in, with). This is also known as Title Casing.

Oterro 11 Help Manual408

Copyright © 1982-2024 R:BASE Technologies, Inc.

In the following example, the value for vTitle is "Snow White and the Seven Dwarfs".

SET VAR vTitle TEXT = (ICAP3('SNOW WHITE AND THE SEVEN DWARFS'))

7.10.5 IFCASEEQ

(IFCASEEQ(arg1,arg2,arg3,arg4))

If the case and values for arg1 and arg2 are equal, IFCASEEQ returns the value of arg3. If the case and
values for arg1 and arg2 are not equal, IFCASEEQ returns the value of arg4. The data types of arg1 and
arg2 must match and the data types of arg3 and arg4 must match.

The function enables easier conformance for password verification, as a mixture of upper and lower case
is a standard.

In the following example, the value for vCheckPW1 is NO.

SET VAR vCheckPW1 TEXT =
(IFCASEEQ('SuperStrong1147','SUPERSTRONG1147','Yes','No'))

In the following example, the value for vCheckPW2 is TRUE.

SET VAR vCheckPW2 TEXT = (IFCASEEQ('LastOne','LastOne','True','False'))

7.10.6 ICHAR

(ICHAR(arg))

Converts a single character, returning its corresponding ASCII integer value.

In the following example, the integer value of vichar is 65.

SET VAR vichar = (ICHAR('A'))

7.10.7 IDAY

(IDAY(arg))

Where arg is a value that has either a DATE or DATETIME data type, IDAY returns the integer day of the
month for a particular date.

In the following example, the value of viday is 12.

SET VAR viday = (IDAY('06/12/93'))

7.10.8 IDIM

(IDIM(arg))

Where arg is a value that has a DATE data type, IDIM returns the number of days within that month.

In the following example, the value of vidim is 31.

SET VAR vidim = (IDIM('03/15/2006'))

7.10.9 IDOY

(IDOY(arg))

Where arg is a value that has a DATE data type, IDOY returns the number day of the year.

R:BASE Database Functions 409

Copyright © 1982-2024 R:BASE Technologies, Inc.

In the following example, the value of vidoy is 74.

SET VAR vidoy = (IDOY('03/15/2006'))

7.10.10 IDWK

(IDWK(arg))

Where arg is a value that has either a DATE or DATETIME data type, IDWK returns the day of the week
where Monday is 1.

In the following example, the value of vidwk is 3.

SET VAR vidwk = (IDWK('06/16/93'))

7.10.11 IFEQ

(IFEQ(arg1,arg2,arg3,arg4))

If arg1 and arg2 are equal, IFEQ returns the value of arg3. If arg1 and arg2 are not equal, IFEQ returns
the value of arg4. The data types of arg1 and arg2 must match and the data types of arg3 and arg4 must
match.

The following command changes the value of the thiscol column to 100 if the values of the variables
vaval and vbval are equal. If vaval and vbval are not equal, the value of thiscol becomes 200 in rows
where thiscol is greater than or equal to 100.

UPDATE thistab SET thiscol=(IFEQ(.vaval, .vbval, 100, 200))+
WHERE thiscol >= 100

7.10.12 IFEXISTS

(IFEXISTS(arg1,arg2,arg3))

If arg1 contains a value, IFEXISTS returns the value of arg2. If arg1 is null, then the value of arg3 is
returned.

7.10.13 IFF

IFF((condition), arg1, arg2)

If the condition is met, then the value of arg1 is returned. If condition is not met, then the value of arg2
is returned.

The condition must follow the syntax specifications as set with IF...ENDIF command structure.

The condition must list a set of conditions that combine to form a statement that is either true or false.
Conditions can be combined with the connecting operators AND, OR, AND NOT, and OR NOT. It is
important to note that the condition needs to be a single item, which is why quotes are used in the
examples below.

The data types of arg1 and arg2 must match.

Examples:

-- Example 01:
- -Comparison of Variables

SET VAR v1 INTEGER = 1
SET VAR v2 INTEGER = 2
SET VAR v3 = (IFF('.v1<.v2','First','Second'))
SHOW VAR v3
First

Oterro 11 Help Manual410

Copyright © 1982-2024 R:BASE Technologies, Inc.

-- Example 02:
-- SELECT and Display Feedback on Data

CONNECT RRBYW19
R>SELECT NetAmount,(IFF('NetAmount>$100000','Good','Needs Improvement'))=30 AS Status
FROM SalesBonus

 NetAmount Status
 --------------- ------------------------------
 $176,000.00 Good
 $87,500.00 Needs Improvement
 $22,500.00 Needs Improvement
 $40,500.00 Needs Improvement
 $76,800.00 Needs Improvement
 $36,625.00 Needs Improvement
 $56,250.00 Needs Improvement
 $152,250.00 Good
 $108,750.00 Good
 $78,750.00 Needs Improvement
 $27,000.00 Needs Improvement
 $9,500.00 Needs Improvement
 $210,625.00 Good

7.10.14 IFGE

(IFGE(arg1,arg2,arg3,arg4))

If arg1 is greater than or equal to arg2, IFGE returns the value of arg3. If arg1 is less than arg2, IFGE
returns the value of arg4. The data types of arg1 and arg2 must match and the data types of arg3 and
arg4 must match.

In the following example, the value of vifge is 4, because the date 01/10/2013 is greater than the date
10/15/2012.

SET VAR vifge = (IFGE('01/10/2013','10/15/2012',4,5))

7.10.15 IFGT

(IFGT(arg1,arg2,arg3,arg4))

If arg1 is greater than arg2, IFGT returns the value of arg3. If arg1 is less than arg2, IFGT returns the
value of arg4. The data types of arg1 and arg2 must match and the data types of arg3 and arg4 must
match.

In the following example, the value of vifgt is 4, because the date 1/1/96 is greater than the date 1/1/95.

SET VAR vifgt = (IFGT('1/1/96','1/1/95',4,5))

7.10.16 IFLE

(IFLE(arg1,arg2,arg3,arg4))

If arg1 is less than or equal to arg2, IFLE returns the value of arg3. If arg1 is greater than arg2, IFLE
returns the value of arg4. The data types of arg1 and arg2 must match and the data types of arg3 and
arg4 must match.

In the following example, the value of vifle is 100, since A is less than B.

SET VAR A = 37

R:BASE Database Functions 411

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET VAR B = 48
SET VAR vifle = (IFLE(.A,.B,100,100))

7.10.17 IFLT

(IFLT(arg1,arg2,arg3,arg4))

If arg1 is less than arg2, IFLT returns the value of arg3. If arg1 is greater than arg2, IFLT returns the
value of arg4. The data types of arg1 and arg2 must match and the data types of arg3 and arg4 must
match.

In the following example, the value of viflt is 4, since A is less than B.

SET VAR A = 37
SET VAR B = 48
SET VAR viflt = (IFLT(.A,.B,4,5))

7.10.18 IFNE

(IFNE(arg1,arg2,arg3,arg4))

If arg1 and arg2 are not equal, IFNE returns the value of arg3. If arg1 and arg2 are equal, IFNE returns
the value of arg4. The data types of arg1 and arg2 must match and the data types of arg3 and arg4 must
match.

In the following example, the value of vifne is 7, since v1 is not equal to v2.

SET VAR v1 = 25
SET VAR v2 = 30
SET VAR vifne = (IFNE(.v1,.v2,7,8))

7.10.19 IFNULL

(IFNULL(arg1,arg2,arg3))

If arg1 is null, then the value of arg2 is returned. If arg1 is not null, then the value of arg3 is returned.

7.10.20 IFRC

(IFRC(arg))

Where arg is a value that has either a TIME or DATETIME data type, IFRC returns the current thousandth
of a second. For this function to work correctly, the TIME format must be set to include thousandths of a
second.

In the following example, the value of vifrc is 123.

SET TIME FOR HH:MM:SS.SSS
SET VAR vifrc = (IFRC('12:15:30.123'))

7.10.21 IFWINDOW

(IFWINDOW('windowname'))

Returns 1 if a form with the windowname is open, 0 if not. Windowname is the name given to the
instance of an MDI form started with the "AS alias" option when using the ENTER, EDIT USING, or
BROWSE USING commands.

7.10.22 IHASH

(IHASH(arg,n))

Oterro 11 Help Manual412

Copyright © 1982-2024 R:BASE Technologies, Inc.

R:BASE includes a function that can be used to create an integer value from a text value. The function
was designed to create effective integer keys from long text columns. The function, IHASH, converts the
entire text value, or just a specified number of characters.

Using this method is more complex that just indexing the LASTNAME column. First you need to add a
computed column to your table using the IHASH function on the LASTNAME column to convert its text to
integer values. You can modify your table through the Data Designer or the ALTER TABLE command:

ALTER TABLE employee ADD Hash_Lname=(IHASH(lastname,0)) INTEGER

The IHASH function converts the entire name to integer when used with the parameter 0. A different
parameter converts the specified number of characters from the name, starting at the first character. For
example, the parameter 7 will convert the first 7 characters of the lastname to an integer value. Deciding
on the number of characters to convert can be one of the hardest things about using this method.
Consider the relationships expressed in the following chart:

Convert FEW characters Convert MORE characters

PROS Less input required Less duplicate values

CONS Greater duplicate values More input required

After adding the computed column to your table, you need to use some programming commands as
shown below to query that column. Using the IHASH function directly in a WHERE clause won't use
indexes. First set a variable equal to IHASH of the value you're searching for, then use the variable in the
WHERE clause. When using an IHASH column for searching, you won't be able to do ad hoc queries from
the R:BASE main menu .

SET VAR vname = (IHASH('Smith',0))
SELECT * FROM employee WHERE Hash_Lname = .vname

This method does provide greater flexibility in that you can have users enter anywhere from 1 character
to the entire name based on the number of characters you specify in the IHASH function. For example,
add a computed column to the table that will IHASH the first four characters of the name. Then, in your
program, check the length that the user enters and if it's greater than four characters use an extra
condition on your WHERE clause.

DIALOG 'Enter lastname (at least 4 characters):' vname vendkey 1
SET VAR vlen1=(SLEN(.vname)),vname1=(SGET(.VNAME,4,1)),+
 vhash=(IHASH(.vname1,4))
 IF vlen1 > 4 THEN
 CHOOSE vchoice FROM #VALUES FOR (firstname & lastname) +
 FROM employee WHERE Hash_Lname=.vhash AND +
 (SGET(lastname,.vlen1,1))=.vname
 ELSE
 CHOOSE vchoice FROM #VALUES FOR (firstname & lastname) +
 FROM employee WHERE Hash_Lname=.vhash
 ENDIF

A user can enter any number of letters for use with an IHASH computation, but must enter at least as
many characters as specified in the IHASH column definition or enter the full name. If the entry less than
the specified number of characters and less than the full length of the name, the correct data is not
found. For example, with a column defined as (IHASH(lastname,7)), entering "WILL" will not find
"WILLIAMS", it will only find "WILL".

The advantages of using a computed column with the IHASH function are that you can turn an inefficient
TEXT index into an efficient INTEGER index and you can provide flexibility in searching. Users will have a
larger selection of names to choose from and can select the appropriate person from the list. For
example, entering WILLIAM will find WILLIAMSON, WILLIAM, and WILLIAMS if you use
IHASH(lastname,7).

A disadvantage of this method is that you need to add columns to your database. An extra computed
column can slow down data entry. If you are tight on disk space this may not be an option. To determine

R:BASE Database Functions 413

Copyright © 1982-2024 R:BASE Technologies, Inc.

how much additional disk space you'll need for an IHASH column, take the number of rows in the table
and multiply by 4. The answer is the number of bytes of disk space you'll need for the additional column.

7.10.23 IHR

(IHR(arg))

Returns the integer hour of time, where arg is a value that has a TIME or DATETIME data type.

In the following example, the value of vihr is 12.

SET VAR vihr = (IHR(12:15:30))

7.10.24 IINFO

(IINFO(arg1,arg2,arg3))

The IINFO function is used to return information about tables, columns, or indexes by reading internal
bitmask flags. The function requires the ID number for the table, column, or index. This ID number can
be obtained from the system tables SYS_TABLES, SYS_COLUMNS, or SYS_INDEXES, respectively. IINFO
returns 0 if FALSE, or the number in argument 3 if TRUE.

Syntax:

(IINFO(flagtype,id,bitmask))

Where:

flagtype specifies the type of information returned; table flags, column flags, column flags

for server tables, index flags, row ID

 id specifies the ID number from the system tables for the table ID, column ID, or index ID

 bitmask species the flag in the system table

Remarks:

· The values for arg1, arg2, and arg3 must be non-null integers, even if a particular
argument is not needed for that case.

· IINFO returns 0 if FALSE, or the bitmask number in parameter 3 if TRUE (flags 4-7).

Flags:

Info Flag Type ID Bitmask Description

Row ID 0 0 0 Returns the rowid of the current row. The rowid is
the offset from the start of file 2 where that row
is stored. The values for arg2 and arg3 are not
used. Using a 0 for arg2 and arg3 is
recommended.

Minimum
Data Type

Scale

1 integer 0 Returns the minimum scale for the data type. The
value for arg2 must be an integer value. The
value for arg3 is not used. Using a 0 for arg3 is
recommended.

Maximum
Data Type

Scale

2 integer 0 Returns the maximum scale for the data type.
The value for arg2 must be an integer value. The
value for arg3 is not used. Using a 0 for arg3 is
recommended.

Table
Cascade Flag

3 table ID 0 Returns cascade flag for a table. The value for
arg3 is not used. Using a 0 for arg3 is
recommended.

Oterro 11 Help Manual414

Copyright © 1982-2024 R:BASE Technologies, Inc.

Column Flags 4 column ID 1 Returns bitmask value if is an autonumber
column

4 column ID 2 Returns bitmask value if a comment exists for
column

4 column ID 4 Returns bitmask value if column has a default
value

4 column ID 8 Returns bitmask value if column is temporary

4 column ID 16 Returns bitmask value if column has an index

4 column ID 32 Returns bitmask value if contains a USER default

4 column ID 64 Returns bitmask value if contains a Not NULL flag

4 column ID 128 Returns bitmask value if is a primary key or
unique key

Column Flags
(Server
Tables)

5 column ID 1 Returns bitmask value if column is an optimal
row qualifier

5 column ID 2 Returns bitmask value if server column is read
only

5 column ID 4 Returns bitmask value if server column is
autonumbered

5 column ID 8 Returns bitmask value if server column row
version qualifier

Table Flags 6 table ID 1 Returns bitmask value if comment exists for table

6 table ID 2 Returns bitmask value if table has a primary key

6 table ID 4 Returns bitmask value if table has a foreign key

6 table ID 8 Returns bitmask value if table has an
autonumbered column

6 table ID 16 Returns bitmask value if table has a default
column

6 table ID 32 Returns bitmask value if table is readonly
(dBASE)

6 table ID 64 Returns bitmask value if table is temporary

6 table ID 128 Returns bitmask value if table has a referenced
key

6 table ID 256 Returns bitmask value if table has a Not NULL
column

6 table ID 512 Returns bitmask value if table has a unique key

6 table ID 1024 Returns bitmask value if table has a column with
a data type greater than 10

6 table ID 2048 Returns bitmask value if table has a
VARBIT/VARCHAR column

6 table ID 4096 Returns bitmask value if a cascade flag updates
and deletes through all primary keys and unique
keys

6 table ID 8192 Returns bitmask value if server table has column
aliases

6 table ID 16384 Returns bitmask value if there is at least one
trigger defined for the table

6 table ID 32768 Returns bitmask value if relation as system view
which created during multiple inner joins

Index Flags 7 index ID 3 Returns bitmask value for the constraint type:
0 = index, 1 = foreign key, 2 = primary key, 3 =
unique key

7 index ID 4 Returns bitmask value if this is a dBase index

7 index ID 8 Returns bitmask value if this is a unique index

7 index ID 16 Returns bitmask value if index is temporary

7 index ID 32 Returns bitmask value if this is a referenced key

7 index ID 64 Returns bitmask value if this is a case sensitive
index

7 index ID 128 Returns bitmask value if the is a Foreign Index

Examples:

R:BASE Database Functions 415

Copyright © 1982-2024 R:BASE Technologies, Inc.

-- Example 01:
-- Using flag type 0 for the Titles table in the RRBYW18 database
SELECT EmpTID,EmpTitle,(IINFO(0,0,0)) FROM Titles

 EmpTID EmpTitle (IINFO(0,0
 ---------- ------------------------------ ----------
 1 Office Manager 524289
 2 Receptionist 524341
 3 Sales Clerk 524393
 4 Director Marketing 524445
 5 Director Corporate Sales 524497
 6 Director Government Sales 524549
 7 Manager Support & Services 524601
 8 Outside Sales 524653

-- Example 02:
-- Returns minimum and maximum data type scales using IINFO and (CVAL('ROWCOUNT'))
with the RRBYW18 database.
-- The values for currency will vary based upon the current CURRENCY DIGITS setting.
SELECT (CVAL('ROWCOUNT')) AS SYS_TYPE, SYS_TYPE_NAME=18, +
(IINFO(1, (INT(CVAL('ROWCOUNT'))), 0)) AS SYS_MIN, +
(IINFO(2, (INT(CVAL('ROWCOUNT'))), 0)) AS SYS_MAX +
FROM SYS_TYPES

Here is what it generates:

 SYS_TYPE SYS_TYPE_NAME SYS_MIN SYS_MAX
 --------------- ------------------ ---------- ----------
 1 CURRENCY 2 2
 2 VARBIT -0- -0-
 3 BITNOTE -0- -0-
 4 BIT -0- -0-
 5 VARCHAR -0- -0-
 6 BIGNUM -0- -0-
 7 BSTR -0- -0-
 8 GUID -0- -0-
 9 TEXT -0- -0-
 10 NUMERIC 0 15
 11 INTEGER 0 0
 12 REAL -0- -0-
 13 DOUBLE -0- -0-
 14 DATE -0- -0-
 15 TIME 0 3
 16 DATETIME 0 3
 17 NOTE -0- -0-

-- Example 03:
-- Displays tables with Cascade within the RRBYW18 database.
-- Note that the tables with 1 for the cascade value are tables
-- with primary keys that cascade to tables with foreign keys.
SELECT SYS_TABLE_NAME=20, +
SYS_TABLE_ID, +
(IINFO(3,SYS_TABLE_ID,0)) AS SYS_CASCADE +
FROM SYS_TABLES WHERE SYS_TABLE_TYPE = 'TABLE'

 SYS_TABLE_NAME SYS_TABLE_ SYS_CASCAD

Oterro 11 Help Manual416

Copyright © 1982-2024 R:BASE Technologies, Inc.

 -------------------- ---------- ----------
 Customer 29 1
 CompUsed 30 0
 SalesBonus 31 0
 PaymentTerms 32 0
 Contact 33 0
 ProdLocation 34 0
 Levels 35 0
 Component 36 0
 Product 37 0
 SecurityTable 38 0
 InvoiceHeader 39 0
 PrintOptions 40 0
 InvoiceDetail 41 0
 LicenseInformation 43 0
 Titles 44 1
 Employee 45 1
 StateAbr 46 0
 FormTable 47 0
 BonusRate 48 0
 TestNote 49 0
 RThemes_eXtreme 50 0
 ContactCallNotes 51 0
 tempemployee 74 0

-- Example 04:
-- Checks that the CustState colun in the Customer table is indexed
SET VAR vCustStateHasIndex = (IINFO(4,191,16))
SHOW VAR vCustStateHasIndex
 16

-- Example 05:
-- Checks that the Employee table has a primary key
SET VAR vEmployeeHasPK = (IINFO(6,45,2))
SHOW VAR vEmployeeHasPK
 2

-- Example 06:
-- Checks that the Component table has a referenced key.
SET VAR vComponentRef = (IINFO(6,39,128))
SHOW VAR vComponentRef
 128

-- Example 07:
-- Returns the constraint type for the EmpID in the SalesBonus table
-- (0 = index, 1 = foreign key, 2 = primary key, 3 = unique key)
SET VAR vIsForeignKey = (IINFO(7,42,3))
SHOW VAR vIsForeignKey
 1

7.10.25 ILY

(ILY(arg))

Checks to see if the current year is a leap year.

R:BASE Database Functions 417

Copyright © 1982-2024 R:BASE Technologies, Inc.

The function returns a 1 if the year is a leap year, and 0 if it is not a leap year.

In the following example, the value of vily is 0.

SET VAR vily = (ILY('03/15/2006'))

7.10.26 IMIN

(IMIN(arg))

Returns the integer minutes of time, where arg is a value that has a TIME or DATETIME data type.

In the following example, the value of vmin is 15.

SET VAR vmin TO (IMIN(12:15:30))

7.10.27 IMON

(IMON(arg))

Returns the integer month for a particular date, where arg is a value that has a DATE or DATETIME data
type.

In the following example, the value of vimon is 5.

SET VAR vimon = (IMON('05/20/95'))

7.10.28 INT

(INT(arg))

Truncates a number that has a REAL, DOUBLE, or CURRENCY data type, returning a value that has an
INTEGER data type.

In the following example, the value of vint is 1.

SET VAR vint = (INT(1.6))

7.10.29 ISALPHA

(ISALPHA(value))

Checks the first character of a TEXT string. The function returns a 1 if true and a 0 if false. For example,
(ISALPHA('abc')) returns 1 because the first character is a letter.

7.10.30 ISDIGIT

(ISDIGIT(value))

Checks the first character of a TEXT string. The function returns a 1 if true and a 0 if false. For example,
(IFDIGIT('abc')) returns 0 because the first character is not a number.

7.10.31 ISEC

(ISEC(arg))

Returns the integer seconds of time, where arg is a value that has a TIME or DATETIME data type.

In the following example, the value of visec is 30.

SET VAR visec = (ISEC(12:15:30))

Oterro 11 Help Manual418

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.10.32 ISLOWER

(ISLOWER(value))

Checks the first character of a TEXT string. The function returns a 1 if true and a 0 if false. For example,
(ISLOWER('abc')) would return 1 because the first character is lower case.

7.10.33 ISSPACE

(ISSPACE(value))

Checks the first character of a TEXT string. The function returns a 1 if true and a 0 if false. The ISSPACE
function evaluates as true when the first character is a space or one of the following: LF (char (10)), CR
(char (13)), VT (char (11)), TAB (char (9)), FF (char (12)), EOL (char (254)).

7.10.34 ISTAT

(ISTAT('keyword'))

Returns the current value or setting of 'keyword'.

Using ISTAT parameters, you can determine database activity, and the current mouse and cursor column
or row coordinates.

Use ISTAT to check the efficiency of settings to adjust locking scheme. You should be able to see
differences in the results returned by the ISTAT keywords TOTALREADS, TOTALWRITES, and
TOTALLOCKS depending on the locking scheme you have set.

The ISTAT function has a number of options that report on available memory in the dynamic data area
R:BASE uses for processing.

You must either enclose the keyword in quotation marks or use a dot variable that has a TEXT data type
to which you have assigned the SHOW keyword.

You can use majority of SHOW keywords with CVAL.

Following keywords can be used for (ISTAT('keyword')):

· CURRNUMALLOC
· CURSORCOL
· CURSORROW
· DBSIZE
· DISKSPACE
· FORM_CONTROL_TYPE
· FORM_DIRTY_FLAG
· ISRUNTIME
· LIMITNUMALLOC
· MAXFREE
· MAXNUMALLOC
· MEMORY
· MOUSECOL
· MOUSEROW
· PAGECOL
· PAGEROW
· RX1SIZE
· RX2SIZE
· RX3SIZE
· RX4SIZE
· TOTALALLOC
· TOTALFREE
· TOTALLOCKS
· TOTALREADS
· TOTALWRITES

R:BASE Database Functions 419

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.10.34.1 CURRNUMALLOC

(ISTAT('CURRNUMALLOC'))

The CURRNUMALLOC parameter allows you to check the number of memory handles R:BASE for DOS
has open. This returns 0 when used with R:BASE for Windows.

7.10.34.2 CURSORCOL

(ISTAT('CURSORCOL'))

(ISTAT('CursorCol')) will return an integer value indicating the current column that contains the cursor.

7.10.34.3 CURSORROW

(ISTAT('CURSORROW'))

(ISTAT('CursorRow')) will return an integer value indicating the current row that contains the cursor.

7.10.34.4 DBSIZE

(ISTAT('DBSIZE'))

DBSIZE returns the size of the currently open database (total of the four database files). If no database
is connected, ISTAT returns 0.

7.10.34.5 DISKSPACE

(ISTAT('DISKSPACE'))

DISKSPACE returns the amount of free disk space on the current drive. If you wish to check for the free
space on drives with over 2 gigs of free you must use syntax similar to this:

SET VAR vSpace DOUBLE = (ISTAT('DISKSPACE'))

This is necessary because the default datatype, INTEGER, cannot hold the required number of digits to
report over 2 gigs of free space.

When depending on this routine it is best to test it on a platform as close to your target platform as
possible.

7.10.34.6 FORM_CONTROL_TYPE

(ISTAT('FORM_CONTROL_TYPE'))

FORM_CONTROL_TYPE returns a value based on which object has focus when the entry/exit procedure
containing the ISTAT function is run. Returns the following.

0 No current control

1 Edit Field

2 Combo Box

3 Check Box

5 Radio Button

7 Push Button

Oterro 11 Help Manual420

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.10.34.7 FORM_DIRTY_FLAG

(ISTAT('FORM_DIRTY_FLAG'))

FORM_DIRTY_FLAG Returns 1 if a change has been made to the data, 0 if no change has been made.

7.10.34.8 ISRUNTIME

(ISTAT('ISRUNTIME'))

Use the ISRUNTIME parameter to determine if the end user is accessing R:BASE via a full version or a
Runtime version.

If the end user is using Runtime the value returned will be 1. If the end user is using a Full Version then
the value returned will be 0.

7.10.34.9 LIMITNUMALLOC

(ISTAT('LIMITNUMALLOC'))

The LIMITNUMALLOC parameter allows you to check the maximum number of memory handles R:BASE
for DOS can open. This returns 0 when used with R:BASE for Windows.

Unless you use the -h startup option this will be 300.

7.10.34.10MAXFREE

(ISTAT('MAXFREE'))

The MAXFREE parameter allows you to determine the largest free memory block within the area allocated
to R:BASE. The TOTALALLOC parameter can be used to determine the total amount of dynamic memory
allocated to R:BASE. MAXFREE will always be smaller than TOTALALLOC.

This will not return valid information under R:BASE for Windows.

7.10.34.11MAXNUMALLOC

(ISTAT('MAXNUMALLOC'))

The MAXNUMALLOC parameter allows you to check the highest number of memory handles R:BASE for
DOS has held open at any one point during this session. This returns 0 when used with R:BASE for
Windows.

7.10.34.12MEMORY

(ISTAT('MEMORY'))

The MEMORY parameter allows you to retrieve the amount of memory, in bytes, remaining for R:BASE
for DOS to use.

This will not return a valid amount when running R:BASE for Windows.

7.10.34.13MOUSECOL

(ISTAT('MOUSECOL'))

MOUSECOL returns the column where the mouse pointer is.

This is only supported in DOS, and will not return a valid amount when running R:BASE for Windows.

R:BASE Database Functions 421

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.10.34.14MOUSEROW

(ISTAT('MOUSEROW'))

MOUSEROW returns the row where the mouse pointer is.

This is only supported in DOS, and will not return a valid amount when running R:BASE for Windows.

7.10.34.15PAGECOL

(ISTAT('PAGECOL'))

PAGECOL returns the column location of the cursor on a virtual page when you are using the SET
PAGEMODE command. PAGECOL can only be used with the SHOW VARIABLE command; it does not work
with the WRITE command.

7.10.34.16PAGEROW

(ISTAT('PAGEROW'))

PAGEROW returns the row location of the cursor on a virtual page when you are using the SET
PAGEMODE command. PAGEROW can only be used with the SHOW VARIABLE command; it does not work
with the WRITE command.

7.10.34.17RX1SIZE

(ISTAT('RX1SIZE'))

The RX1SIZE parameter returns the size, in bytes, of the RX1 file of the currently connect database. You
may need to use the following syntax for large databases:

SET VAR vSize DOUBLE = (ISTAT('RX1SIZE'))

This is simply because the default datatype, INTEGER, may not be able to hold values as large as you
need.

For a combined size use the DBSIZE parameter.

7.10.34.18RX2SIZE

(ISTAT('RX2SIZE'))

The RX2SIZE parameter returns the size, in bytes, of the RX2 file of the currently connect database. You
may need to use the following syntax for large databases:

SET VAR vSize DOUBLE = (ISTAT('RX2SIZE'))

This is simply because the default datatype, INTEGER, may not be able to hold values as large as you
need.

For a combined size use the DBSIZE parameter.

7.10.34.19RX3SIZE

(ISTAT('RX3SIZE'))

The RX3SIZE parameter returns the size, in bytes, of the RX3 file of the currently connect database. You
may need to use the following syntax for large databases:

SET VAR vSize DOUBLE = (ISTAT('RX3SIZE'))

Oterro 11 Help Manual422

Copyright © 1982-2024 R:BASE Technologies, Inc.

This is simply because the default datatype, INTEGER, may not be able to hold values as large as you
need.

For a combined size use the DBSIZE parameter.

7.10.34.20RX4SIZE

(ISTAT('RX4SIZE'))

The RX4SIZE parameter returns the size, in bytes, of the RX4 file of the currently connect database. You
may need to use the following syntax for large databases:

SET VAR vSize DOUBLE = (ISTAT('RX4SIZE'))

This is simply because the default datatype, INTEGER, may not be able to hold values as large as you
need.

For a combined size use the DBSIZE parameter.

7.10.34.21TOTALALLOC

(ISTAT('TOTALALLOC'))

The TOTALALLOC parameter allows you to determine the amount of dynamic memory allocated to
R:BASE. Unless you ZIP out to another program this number should not change during an R:BASE
session.

This will not return valid information under R:BASE for Windows.

7.10.34.22TOTALFREE

(ISTAT('TOTALFREE'))

The TOTALFREE parameter allows you to determine the total amount of free memory within the area
allocated to R:BASE. The TOTALALLOC parameter can be used to determine the total amount of dynamic
memory allocated to R:BASE. TOTALFREE will always be smaller than TOTALALLOC.

This will not return valid information under R:BASE for Windows.

7.10.34.23TOTALLOCKS

(ISTAT('TOTALLOCKS'))

TOTALLOCKS is used to determine the total number of locks placed on any assortment of tables, rows,
and indexes.

7.10.34.24TOTALREADS

(ISTAT('TOTALREADS'))

TOTALREADS returns the total number of disk reads since R:BASE began or the number of reads since
the statement was last executed.

7.10.34.25TOTALWRITES

(ISTAT('TOTALWRITES'))

TOTALWRITES returns the total disk writes since opening or since the last time the command was
executed.

R:BASE Database Functions 423

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.10.35 ISTR

(ISTR('string',position))

Returns the corresponding integer value.

This function converts a single character, which you specify within a string by position, returning its
corresponding ASCII Character Chart Decimal value.

In the following example, the INTEGER value of vDecimalValue is 65 for the capital letter A.

Example 01:

Start R:BASE for Windows

At the R> Prompt:

SET VARIABLE vDecimalValue = (ISTR('R:BASE Rocks!',4))

SHOW VARIABLE

vDecimalValue = 65 INTEGER

7.10.36 ISUPPER

(ISUPPER(value))

Checks the first character of a TEXT string. The function returns a 1 if true and a 0 if false. For example,
(ISUPPER('abc')) returns 0 because the first character is not upper case.

7.10.37 ITEMCNT

(ITEMCNT('Text String'))

Use to count the number of items in a text string separated by current comma delimiter.

In the following example, the value of vItems is 3.

SET VAR vItems = (ITEMCNT('a,b,c'))

Here is an example of using this function in a command block to format a CHOOSE box:

SET VAR vModels TEXT = NULL
SET VAR vLines INTEGER = NULL
SET VAR vModel TEXT = NULL
SELECT (LISTOF(Model)) INTO vModels INDIC IModel FROM Product
SET VAR vLines = (ITEMCNT(.vModels))
IF vLines > 18 THEN
SET LINES = 18
ENDIF
CLS
CHOOSE vModel FROM #LIST .vModels AT 4 30 TITLE 'Choose Model' +
CAPTION 'Available Models' Lines .vLines FORMATTED
IF vModel IS NULL OR vModel = '[Esc]' THEN
GOTO Done
ENDIF

-- Do what you have to do here ...

LABEL Done

Oterro 11 Help Manual424

Copyright © 1982-2024 R:BASE Technologies, Inc.

CLEAR ALL VAR
QUIT TO MainMenu.RMD
RETURN

7.10.38 IWOY

(IWOY(arg))

Where arg is a value that has a DATE data type, IWOY returns the number week of the year.

In the following example, the value of viwoy is 11.

SET VAR viwoy = (IWOY('03/15/2006'))

7.10.39 IYR

(IYR(arg))

Where arg is a value that has a DATE or DATETIME data type, IYR returns a two or four-digit integer
year of date, depending on how the DATE format is set.

In the following example, the value of viyr is 1995 if the year in the DATE format is set to YYYY. The
value of viyr is 95 if the year in the DATE format is set to YY.

SET VAR viyr = (IYR('09/13/95'))

7.10.40 IYR4

(IYR4(date)) or (IYR4(datetime))

Where arg is a value that has a DATE or DATETIME data type, IYR4 always returns a four-digit integer
year of date, This is different than the IYR function with depends on how the DATE format is set.

This function will allow users to capture four digit year, regardless of the DATE FORMAT or DATE
SEQUENCE settings. Results will be based on the DATE YEAR and CENTURY settings. See DATE format.

Example 01 (Database with settings):

DATE FORMAT: MM/DD/YYYY
DATE SEQ: MMDDYY
DATE YEAR: 30
DATE CENT: 19
SET VAR v1 = (IYR4(.#DATE))

Variable v1 will return the four digit INTEGER value of 2000

Example 02:

SET VAR v2 DATETIME = ('06/26/2000 08:00')
SET VAR v3 = (IYR4(.v2))

Variable v3 will return the four digit INTEGER value of 2000

Example 03 (Database with settings):

DATE FORMAT: MM/DD/YY
DATE SEQ: MMDDYY
DATE YEAR: 30
DATE CENT: 19
SET VAR v1 = (IYR4(.#DATE))

R:BASE Database Functions 425

Copyright © 1982-2024 R:BASE Technologies, Inc.

Variable v1 will ALSO return the four digit INTEGER value of 2000

Example 04:

SET VAR v2 DATETIME = ('06/26/00 08:00')
SET VAR v3 = (IYR4(.v2))

Variable v3 will ALSO return the four digit INTEGER value of 2000

7.11 J

7.11.1 JDATE

(JDATE(arg))

Where arg is a value that has a DATE or DATETIME data type, JDATE returns the Julian date of the date
in the form YYYYDDD. This is a change from versions prior to R:BASE 6.1a which returned a value in the
format YYDDD. This two digit year format was incompatible with the year 2000 and may require altering
database structure or program code.

In the following example, the value of vjdate is 1995163. The year is 1995, and 163 means that the date
is the 163rd day of 1995.

SET VAR vjdate = (JDATE('06/12/95'))

7.12 L

7.12.1 LASTKEY

(LASTKEY(arg))

Where arg is 0 or 1. When arg is 1, LASTKEY returns the original mapping for a key that has been
remapped (the key that was pressed). When arg is 0, LASTKEY returns the current mapping (the key that
was executed).

In the following example, DIALOG displays the message and the current date, which the user can edit.
LASTKEY captures the last key pressed by the user, enabling the user to press [Esc] to avoid entering a
date.

SET VARIABLE vdate TEXT
SET VARIABLE vdate = (CTXT(.#DATE))
DIALOG 'Enter the invoice date to print:' vdate vendkey 1
SET VARIABLE vlast = (LASTKEY(0))
IF vlast = '[Esc]' THEN

GOTO skipprnt
ENDIF

7.12.2 LAVG

(LAVG(list))

Returns the average of the values in list. Values in a list can be a CURRENCY, DOUBLE, REAL, INTEGER,
NUMERIC, DATE, or TIME data type. The function LAVG is not the same as the function AVG, which is
used only with the SELECT command.

In the following example, the value of vlavg is 5. The total of the list is 20, which is divided by 4, the
number of values in the list.

SET VAR vlavg = (LAVG(2,4,6,8))

Oterro 11 Help Manual426

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.12.3 LJS

(LJS(text,width))

Left justifies text in width characters, returning a text string.

In the following example, the value of vljs is ABCD. The text string is left justified in the field. In this
case, trailing blanks are removed.

SET VAR vljs = (LJS('ABCD',10))

The value of vljs2 in the following example is COLUMN ONE COLUMN TWO. You can use LJS to
embed spaces and concatenate strings, for example, to create a row of column headings for a screen or
variable form. When you concatenate strings before assigning the result to a variable, as in this example,
trailing blanks are retained. These spaces are preserved even if the first value is null.

SET VAR vljs2 = (LJS('COLUMN ONE',20) + 'COLUMN TWO')

The following example returns COLUMN TWO if vcolname is null.

SET VAR vcol2 TEXT = 'COLUMN TWO'
SET VAR vljs3 TEXT = (LJS(.vcolname,20) + .vcol2))

7.12.4 LMAX

(LMAX(list))

Returns the maximum value in list. Values in a list can be a CURRENCY, DOUBLE, REAL, INTEGER,
NUMERIC, DATE, or TIME data type. The function LMAX is not the same as the function MAX, which is
used only with the SELECT command.

In the following example, the value of vlmax is 80, the highest number in the list.

SET VAR vlmax = (LMAX(2,80,14,22))

7.12.5 LMIN

(LMIN(list))

Returns the minimum value in list. Values in a list can be a CURRENCY, DOUBLE, REAL, INTEGER,
NUMERIC, DATE, or TIME data type. The function LMIN is not the same as the function MIN, which is used
only with the SELECT command.

In the following example, the value of vlmin is 2, the lowest number in the list.

SET VAR vlmin = (LMIN(2,80,14,22))

7.12.6 LOG

(LOG(arg))

Returns log base e of arg (where e = 2.71828182845905). Arg must be a positive value and have a
DOUBLE, REAL, NUMERIC, or INTEGER data type. LOG performs the inverse operation of EXP.

In the following example, the value of vlog is 0.6931.

SET VAR vlog = (LOG(2))

R:BASE Database Functions 427

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.12.7 LOG10

(LOG10(arg))

Returns log base 10 of arg. Arg must be a positive value and have a DOUBLE, REAL, NUMERIC, or
INTEGER data type.

In the following example, the value of vlog2 is 2.

SET VAR vlog2 = (LOG10(100))

7.12.8 LSTDEV

(LSTDEV(list))

Returns the standard deviation for a list of values.

Remarks:

· The standard deviation is a measure of how widely values are dispersed from the average value.
· LSTDEV supports CURRENCY, DECIMAL, DOUBLE, FLOAT, REAL, NUMERIC, or INTEGER data type.

Example:

SET VAR vListStDev DOUBLE =
(LSTDEV(173.20,189.45,3929.14,434.75,333.25,257.50,88.70,641.86))
SHOW VAR vListStDev
1293.84205284038

7.12.9 LSUM

(LSUM(list))

Return the sum for a list of values.

Remarks:

· LSUM supports CURRENCY, DOUBLE, REAL, NUMERIC, INTEGER, BIGINT, SMALLINT, or BIGNUM
data types.

Example:

SET VAR vListSum DOUBLE = (LSUM(189.45,79.14,43.75,33.25,27.58,789.40,6.12))
SHOW VAR vListSum
1168.69

7.12.10 LTRIM

(LTRIM(text))

Trims leading blanks from text, returning a text string.

In the following example, the value of vltrim is the text string ABCDE without the leading blanks.

SET VAR vltrim = (LTRIM(' ABCDE'))

7.12.11 LUC

(LUC(arg))

Converts arg from lowercase to uppercase, returning a text string.

Oterro 11 Help Manual428

Copyright © 1982-2024 R:BASE Technologies, Inc.

In the following example, the value of vluc is an uppercase A.

SET VAR vluc = (LUC('a'))

7.12.12 LVARIANCE

(LSTDEV(list))

Return the variance for a list of values.

Remark:

· LVARIANCE supports CURRENCY, DECIMAL, DOUBLE, FLOAT, REAL, NUMERIC, or INTEGER data
type.

Example:

SET VAR vListVariance DOUBLE =
(LVARIANCE(528.00,175.00,36.63,112.50,456.75,326.25,157.50,27.00,631.88))
SHOW VAR vListVariance
49438.425925

7.13 M

7.13.1 MAKEUTF8

(MAKEUTF8(text))

Converts upper ASCII characters text data into UTF-8 encoded characters.

Example:

R>SHOW VAR vText
Franz Wei? has met Anna G?rtner

R>SET VAR vUTF8Text = (MAKEUTF8(.vText))

R>SHOW VAR v%
Variable = Value Type
------------------ ------------------------------ -------
vText = Franz Wei? has met Anna TEXT
 G?rtner
vUTF8Text = Franz Weiß has met Anna TEXT
 Gärtner

7.13.2 MOD

(MOD(arg1,arg2))

Computes a modulus or remainder of arg1 divided by arg2. Arg1 and arg2 must be values that have
DOUBLE, REAL, NUMERIC, or INTEGER data types and arg2 cannot be 0.

In the following example, the value of vmod is 1, the remainder when 3 is divided by 2.

SET VAR vmod = (MOD(3,2))

R:BASE Database Functions 429

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.14 N

7.14.1 NEXT

(NEXT(tblname,autonumcol))

Returns the next value of an autonumbered column.

Where colname is an autonumbered column in tblname NEXT returns, and increments, the value of the
next available autonumber. You cannot use this function with INSERT, but you can use it with
LOAD;NONUM. For example: Assume that you have autonumbered the column EmployeeID in the table
Employees. The highest number currently used in the database is 134. In this case, in the following
example, the value of vNextOne will be 135 and the value of vNextTwo will be 136.

Notice that the value has incremented even though no other commands or functions were issued.

SET VAR vNextOne = (NEXT(Employees,EmployeeID))
SET VAR vNextTwo = (NEXT(Employees,EmployeeID))

7.14.2 NINT

(NINT(arg))

Rounds a number that has a TEXT, REAL, DOUBLE, NUMERIC, or CURRENCY data type to the nearest
integer, returning a value that has an INTEGER data type.

In the following example, the value of vnint1 is 3 and the value of vnint2 is 4.

SET VAR vnint1 = (NINT(2.6))
SET VAR vnint2 = (NINT(4.4))

7.15 P

7.15.1 PMT1

(PMT1(int,per,pv))

Returns the amount of the periodic payment needed to pay off the present value, pv, based on the
periodic interest rate, int, for the number of compounding periods, per.

In the following example, PMT1 returns the monthly payment amount for a loan of $12,000 with a 12%
annual interest rate and five years to pay it off. The value of vpmt1 (the monthly payment) is $266.93.

SET VAR vpmt1 = (PMT1(.01,60,12000))

7.15.2 PMT2

(PMT2(int,per,fv))

Returns the amount of the periodic payment to accrue the future value, fv, based on the periodic interest
rate, int, for the number of compounding periods, per.

In the following example, PMT2 returns the monthly payment you must make if you want to have
$25,000 in 10 years and your annual interest rate is 7%, compounded monthly. The value of vpmt2 (the
payment) is $144.44.

SET VAR vpmt2 = (PMT2((.07/12),120,25000))

Oterro 11 Help Manual430

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.15.3 PV1

(PV1(pmt,int,per))

Returns the present value of a series of equal payments of the amount, pmt, periodic interest rate, int,
and compounding periods, per.

In the following example, PV1 returns the present value of an annuity with an annual interest rate of 9%
and for which you want to pay $500 each month for 20 years. The value of vpv1 (the present value) is
$55,572.48.

SET VAR vpv1 = (PV1(500,.0075,240))

7.15.4 PV2

(PV2(fv,int,per))

Returns the present value based on the future value, fv, interest rate, int, and the number of
compounding periods, per.

In the following example, PV2 returns the amount you must invest for a period of one year to return a
future value of $3,500 where the annual rate is 7.6% (compounded daily). The value of vpv2 (the
amount to invest) is $3,247.63.

SET VAR vpv2 = (PV2(3500,(.075/365),365))

7.16 R

7.16.1 RANDOM

(RANDOM(value))

Generates a random number between 0 and the value entered.

7.16.2 RATE1

(RATE1(fv,pv,per))

Returns the periodic interest rate required to return the future value, fv, based on the present value, pv,
over the number of compounding periods, per.

In the following example, RATE1 returns the interest rate you must have if your initial investment is
$8,500 and you want a future yield of $10,000 after 24 months. The value of vrate1 (the interest rate) is
.0068, a monthly rate of .68 percent, or 8.16% annually.

SET VAR vrate1 = (RATE1(10000,8500,24))

7.16.3 RATE2

(RATE2(fv,pmt,per))

Returns the periodic interest rate on a series of regular payments, pmt, whose future value is fv over the
number of compounding periods, per.

In the following example, RATE2 returns the interest rate you must have if your goal is $37,000 and you
deposit $500 each month for five years. The value of vrate2 is .0069, a monthly rate of .69 percent, or
8.28% annually.

SET VAR vrate2 = (RATE2(37000,500,60))

R:BASE Database Functions 431

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.16.4 RATE3

(RATE3(pv,pmt,per))

Returns the periodic interest rate required for an annuity of value pv, to return a series of equal
payments, pmt, over a number of compounding periods, per.

In the following example, RATE3 returns the interest rate of an annuity, purchased at $50,000, which will
pay $570 monthly for 10 years. The value of vrate3 is .0055, a monthly rate of .55 percent, or 6.6%
annually.

SET VAR vrate3 = (RATE3(50000,570,120))

7.16.5 RDATE

(RDATE(mon,day,yr))

Converts integers mon, day, and yr to a DATE data type. Yr must be a four-digit year. The result
returned by RDATE will vary, depending on the DATE format.

The following command assigns to the transdate column in the transmaster table the date derived from
the values of vmon and vday (integers) as the month and day, and 1995 as the year in rows where the
transdate column has a value.

UPDATE transmaster SET transdate = (RDATE(.vmon, .vday, 1995)) +
WHERE transdate IS NOT NULL

7.16.6 REVERSE

(RTRIM(text))

Returns the reverse order of text in a string.

In the following example, the value for vReverse is "erawtfoS evitcaretnI".

SET VAR vReverse TEXT = (REVERSE('Interactive Software'))

7.16.7 RJS

(RJS(text,width))

Right justifies text in width characters returning a text string.

In the following example, the value of vrjs is ABCD. The text string is right justified in a 10-character
field.

SET VAR vrjs = (RJS('ABCD',10))

7.16.8 RNDDOWN

(RNDDOWN(arg1, arg2))

Returns a number rounded down to a specified number of digits.

Where: arg1 is the value to be rounded

 arg2 is the position to be rounded down after the decimal point

Remarks:

· RNDDOWN behaves like ROUND, except that it always rounds a number down.
· If digits is greater than 0 (zero), then number is rounded down to the specified number of decimal

places.

Oterro 11 Help Manual432

Copyright © 1982-2024 R:BASE Technologies, Inc.

· If digits is 0, then number is rounded down to the nearest integer.
· If digits is less than 0, then number is rounded down to the left of the decimal point.

Examples

Example 01:

SET VAR v1 DOUBLE = (RNDDOWN(662.79,0))
SHOW VAR v1
662

Example 02:

SET VAR v2 DOUBLE = (RNDDOWN(662.79, 1))
SHOW VAR v2
662.7

Example 03:

SET VAR v3 DOUBLE = (RNDDOWN(54.1, -1))
SHOW VAR v3
50

Example 04:

SET VAR v4 DOUBLE = (RNDDOWN(55.1, -1))
SHOW VAR v4
50

Example 05:

SET VAR v5 DOUBLE = (RNDDOWN(-23.67, 1))
SHOW VAR v5
-23.6

7.16.9 RNDUP

(RNDUP(arg1, arg2))

Return a number value rounded up to a specified number of digits

Where: arg1 is the value to be rounded
arg2 is the position to be rounded up after the decimal point

Remarks:

· RNDUP behaves like ROUNDDWN, except that it always rounds a number up
· If arg2 is greater than 0 (zero), then number is rounded up to the specified number of decimal

places.
· If arg2 is 0, then number is rounded up to the nearest integer.
· If arg2 is less than 0, then number is rounded up to the left of the decimal point.

Examples:

Example 01:

SET VAR vRoundUp1 DOUBLE = (RNDUP(762.273735,2))
SHOW VAR vRoundUp1

762.28

R:BASE Database Functions 433

Copyright © 1982-2024 R:BASE Technologies, Inc.

Example 02:

SET VAR vRoundUp2 DOUBLE = (RNDUP(7796162.1455,-2))
SHOW VAR vRoundUp2

7796200.

7.16.10 ROUND

(ROUND(arg1, arg2))

Where: arg1 is the value to be rounded

 arg2 is the position to be rounded after the decimal point

Example 01:

SET VAR vNumber DOUBLE = 1.4567

SET VAR vRound = (ROUND(.vNumber,1))

Resulting vRound will be equal to 1.5

Example 02:

SET VAR vNumber DOUBLE = 1.4567

SET VAR vRound = (ROUND(.vNumber,2))

Resulting vRound will be equal to 1.46

Example 03:

SET VAR vNumber DOUBLE = 1.4567

SET VAR vRound = (ROUND(.vNumber,3))

Resulting vRound will be equal to 1.457

7.16.11 RTIME

(RTIME(hrs,min,sec,frc))

Converts integers hrs, min, sec, and frc to a TIME data type. Hrs is on a 24-hour scale. RTIME can be
specified for up to thousandths of a second. The frc argument is optional.

In the following example, the value of vrtime is 12:15:30, stored in internal R:BASE time format.

The time value will be displayed according to how you have set the TIME format. When you use time data
in expressions, the result is given in seconds. You can use RTIME to convert this result to hours, minutes,
and seconds. The value of velapsed1 is 1170 seconds; the value of velapsed2 is 0:19:30.

SET VAR vrtime = (RTIME(12,15,30))
SET VAR vstart TIME = '1:10:40'
SET VAR vend TIME = '1:30:10'
SET VAR velapsed1 = (.vend - .vstart)
SET VAR velapsed2 = (RTIME(0,0,.velapsed1))

Oterro 11 Help Manual434

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.16.12 RTRIM

(RTRIM(text))

Trims trailing blanks from text, returning a text string.

In the following example, the value of vrtrim is the text string ABCDE without the trailing blanks.

SET VAR vrtrim = (RTRIM('ABCDE '))

7.17 S

7.17.1 SFIL

(SFIL(chr,nchar))

Fills a text string with a specified character chr, for nchar characters up to 500. You cannot use a number
as a character. Instead, assign the number to a variable that has a TEXT data type using the variable
name in SFIL.

In the following example, the value of vsfil is the text string ==========. R:BASE programs often
include SFIL to draw lines.

SET VAR vsfil = (SFIL('=',10))

7.17.2 SGET

(SGET(text,nchar,pos))

Gets nchar characters from text starting at pos, returning a text string.

In the following example, the value of vsget is BCD, the three characters starting in the second position
of the text string.

SET VAR vsget = (SGET('ABCDE',3,2))

7.17.3 SIGN

(SIGN(arg1,arg2))

Transfers the sign of arg2 to arg1. Arg1 and arg2 must be values that have DOUBLE, REAL, NUMERIC, or
INTEGER data types.

In the following example, the value of vsign is -15, changing the sign of the first argument to the sign of
the second argument.

SET VAR vsign = (SIGN(15,-20))

7.17.4 SIN

(SIN(angle))

Returns the trigonometric sine of angle.

In the following example, the value of vsin is 0.8659.

SET VAR vsin = (SIN(1.047))

7.17.5 SINH

(SINH(angle))

Returns the hyperbolic sine of angle.

R:BASE Database Functions 435

Copyright © 1982-2024 R:BASE Technologies, Inc.

In the following example, the value of vsinh is 1.2491.

SET VAR vsinh = (SINH(1.047))

7.17.6 SKEEP

(SKEEP(source, chars))

Keeps characters within the source string, using chars as a comparison.

This function is CASE SENSITIVE.

In the following example, the value of vskeep is ldilliamennighway.

SET VAR vskeep = (SKEEP('3935 Old William Penn
Highway','abcdefghijklmnopqrstuvwxyz'))

Spaces are also recognized.

In the following example, the value of vskeep2 is ld illiam enn ighway.

SET VAR vskeep2 = (SKEEP('3935 Old William Penn Highway','
abcdefghijklmnopqrstuvwxyz'))

7.17.7 SKEEPI

(SKEEPI(source, chars))

Keeps characters within the source string, using chars as a comparison.

This function is NOT CASE SENSITIVE.

In the following example, the value of vskeepi is OldWilliamPennHighway.

SET VAR vskeepi = (SKEEPI('3935 Old William Penn
Highway','abcdefghijklmnopqrstuvwxyz'))

Spaces are also recognized.

In the following example, the value of vskeepi2 is Old William Penn Highway.

SET VAR vskeepi2 = (SKEEPI('3935 Old William Penn Highway','
abcdefghijklmnopqrstuvwxyz'))

7.17.8 SLEN

(SLEN(text))

Returns the length of text. SLEN is often used to ensure that a string does not exceed the space allowed
for it on a form, variable form, or report. When strings are concatenated or passed as parameters to a
procedure file, the length of a string might be unknown.

In the following example, the value of vslen is 5, the number of characters in the text string.

SET VAR vslen = (SLEN('ABCDE'))

Oterro 11 Help Manual436

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.17.9 SLOC

(SLOC(text,string))

Locates string in text, returning the position if the string is found, 0 if it is not found.
In the following example, the value of vsloc1 is 3.

SET VAR vsloc1 = (SLOC('ABCDE','C'))

The value of vsloc2 in the following example is 0, since the text string X does not exist in the text string
ABCDE.

SET VAR vsloc2 = (SLOC('ABCDE','X'))

In the following example, the custzip column contains a customer's zip code, in which the first five
characters might be followed by a dash and another four characters. If the first row contained the string
02178-5243, Sloc3 would capture the position of the dash (6), which is in the sixth position.

SET VAR v5zip = custzip IN customer WHERE COUNT = 1
SET VAR sloc3 = (SLOC(.v5zip,'-'))

7.17.10 SLOCI

(SLOCI(TextNoteVarcharValue,string,arg))

Returns the INTEGER value for the number of instances a string appears in a TEXT, NOTE, or VARCHAR
value.

The argument parameter determines whether the string search is case sensitive, where "0" is not case
sensitive while "1" is case sensitive.

In the following example, the number of instances of a colon is 2.

SET VAR vProduct1 INTEGER = (SLOCI('R:BASE Single Seat: Upgrade',':',0))

In the following example, the number of instances of an upper case S is 2.

SET VAR vProduct2 INTEGER = (SLOCI('RBZip Single Seat License: Upgrade','S',1))

In the following example, the number of instances of an upper case or lower case S is 3.

SET VAR vProduct3 INTEGER = (SLOCI('RBZip Single Seat License: Upgrade','S',0))

7.17.11 SLOCP

(SLOCP(TextNoteVarcharValue,string,occurrence))

Locates the exact position of a given string and occurrence in a TEXT, NOTE or VARCHAR value,
returning the position if the string is found, 0 if it is not found. Using -1 as the third parameter will return
the LAST occurrence.

In the following example, the value of vslocp1 is 1.

SET VARIABLE v1 VARCHAR = 'ABCDEABC_AB'
SET VARIABLE vslocp1 = (SLOCP(.v1,'AB',1))

In the following example, the value of vslocp2 is 6.

R:BASE Database Functions 437

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET VARIABLE v1 VARCHAR = 'ABCDEABC_AB'
SET VARIABLE vslocp2 = (SLOCP(.v1,'AB',2))

7.17.12 SMOVE

(SMOVE(text,pos1,nchar,string,pos2))

From text, starting at position pos1, moves nchar characters to string starting at position pos2.

In the example below, the value of vsmove1 is XBCDX. The characters BCD in the first string are moved
into the second through fourth positions in the string XYZXX.

SET VAR vsmove1 = (SMOVE('ABCDE',2,3,'XYZXX',2))

In the following example, the custcity column is 12 characters wide and contains the string ANCHORAGE
in the first row. You can use SMOVE to fill in a blank (13 characters in the example above) in order to
customize a report title. The value of vfulltitle is ANCHORAGE WAREHOUSE.

SET VAR vcity = custcity IN customer WHERE COUNT = 1
SET VAR vfulltitle = (SMOVE(.vcity,1,12,' WAREHOUSE',1))

7.17.13 SOUNDEX

(SOUNDEX(value))

Converts a text value to the corresponding SOUNDEX code.

7.17.14 SPUT

(SPUT(text,string,pos))

Puts string into text, starting at pos, returning a text string.

The value of vsput1 in the following example is AXCDE. The character X is put into the second position in
the string ABCDE.

SET VAR vsput1 = (SPUT('ABCDE','X',2))

7.17.15 SQRT

(SQRT(arg))

Returns square root of arg. Arg must be a positive value with a DOUBLE, REAL, NUMERIC, or INTEGER
data type.

In the following example, the value of vsqrt is 10.

SET VAR vsqrt = (SQRT(100))

7.17.16 SRPL

(SRPL(sourcestring,searchstring,replacestring,[0|1]))

Enables searching for and replacing text within a specified string of text.

sourcestring - specifies a string of text to search
searchstring - specifies text to search for
replacestring - specifies the replacement text
flag - 0 = replacement occurs for every matching string
 - 1 = replacement occurs for whole word matches only

Oterro 11 Help Manual438

Copyright © 1982-2024 R:BASE Technologies, Inc.

The following "0 flag" example replaces 04/20/64 with 04-20-64:

SET VAR vsrpl = (SRPL('04/20/64','/','-',0))

The following "1 flag" example replaces Dear Joe with Dear Anne:

SET VAR vsrpl = (SRPL('Dear Joe','Joe','Anne',1))

However, with this next "1 flag" example DearJoe remains the same as DearJoe is a whole word without
a space.

SET VAR vsrpl = (SRPL('DearJoe','Joe','Anne',1))

7.17.17 SSTRIP

(SSTRIP(source, chars))

Strips characters from the source string, using chars as a comparison.

This function is CASE SENSITIVE.

In the following example, the value of vsstrip is 3935 O W P H.

SET VAR vsstrip = (SSTRIP('3935 Old William Penn
Highway','abcdefghijklmnopqrstuvwxyz'))

Spaces are also recognized.

In the following example, the value of vsstrip2 is 3935OWPH.

SET VAR vsstrip2 = (SSTRIP('3935 Old William Penn Highway','
abcdefghijklmnopqrstuvwxyz'))

7.17.18 SSTRIPI

(SSTRIPI(source, chars))

Strips characters from the source string, using chars as a comparison.

This function is NOT CASE SENSITIVE.

In the following example, the value of vsstripi is 3935 , 15668.

SET VAR vsstripi = (SSTRIPI('3935 Old William Penn Highway,
15668','abcdefghijklmnopqrstuvwxyz'))

Spaces are also recognized.

In the following example, the value of vsstripi is 3935,15668.

SET VAR vsstripi = (SSTRIPI('3935 Old William Penn Highway, 15668','
abcdefghijklmnopqrstuvwxyz'))

R:BASE Database Functions 439

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.17.19 SSUB

(SSUB(text,n))

Captures substring number n from text, returning a text string. Substrings in text are separated by a
comma (or the current delimiter).

The SSUB function is often used with the CHOOSE command when capturing menu options from a pull-
down menu.

In the following example, the value of vssub is yearend.

SET VAR vtext = 'reports,yearend'
SET VAR vssub = (SSUB(.vtext,2))

The following example shows that SSUB separates items based on a blank rather than the current
delimiter when n is less than zero.

SET VAR vtext = 'reports yearend'
SET VAR vssub2 = (SSUB(.vtext,-2))

The following example also returns yearend. For this example, assume that twodim is a bar with a pull-
down menu with the options Edit and Enter stored as text numbers according to their positions on the
menu. The pop-up menu for both options contains a list of form names, so the second item in the
CHOOSE variable will be a form name.

CHOOSE vtwodim FROM twodim
SET VARIABLE vbar = (SSUB(.vtwodim,1))
SET VARIABLE vpull = (SSUB(.vtwodim,2))
IF vbar = '1' THEN

EDIT USING .vpull
ELSE

ENTER .vpull
ENDIF

7.17.20 SSUBCD

(SSUBCD(text,n,delimiter))

Captures substring number n from text, returning a text string. Substrings in text are separated with a
specified custom delimiter.

In the following example, the value for vSubString is "Reports".

SET VAR vSubString = (SSUBCD('Forms|Reports|Labels',2,'|'))

7.17.21 STRIM

(STRIM(text))

Trims trailing blanks from text, returning a text string.

In the following example, the value of vstrim is the text string ABCDE without the trailing blanks.

SET VAR vstrim = (STRIM('ABCDE '))

Oterro 11 Help Manual440

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.18 T

7.18.1 TAN

(TAN(angle))

Returns the trigonometric tangent of angle.

In the following example, TAN defines a new column newtan for the mytable table. Newtan is a computed
column providing the tangent of the angle in radians stored in the oldangle column.

ALTER TABLE mytable ADD newtan = (TAN(oldangle)) DOUBLE

7.18.2 TANH

(TANH(angle))

Returns the hyperbolic tangent of angle.

In the following example, the value of vtanh is .7616.

SET VAR vtanh = (TANH(1))

7.18.3 TDWK

(TDWK(arg))

Returns the day of the week as text, where arg is a value that has either a DATE or DATETIME data type.

In the following example, the value of vtdwk is Saturday.

SET VAR vtdwk = (TDWK('12/02/95'))

7.18.4 TERM1

(TERM1(pv,int,fv))

Returns the number of compounding periods (the term) for a return of future value fv, based on the
present value, pv, and the interest rate, int.

In the following example, TERM1 returns the number of months your money must stay invested if you
want to accumulate $10,000 on an initial investment of $5,000 at a compounded monthly rate of 1%
(12% annually). The value of vterm1 (the term) is 70.

SET VAR vterm1 = (TERM1(5000,.01,10000))

7.18.5 TERM2

(TERM2(pmt,int,fv))

Returns the number of compounding periods (the term) for a return of future value fv, based on the
payment, pmt, and interest rate, int.

In the following example, TERM2 returns the number of years you must make payments if you want to
accumulate $75,000 by making annual installments of $2,000 at 8% annual interest. The value of vterm2
(the term) is 18.

SET VAR vterm2 = (TERM2(2000,.08,75000))

R:BASE Database Functions 441

Copyright © 1982-2024 R:BASE Technologies, Inc.

7.18.6 TERM3

(TERM3(pmt,int,pv))

Returns the number of periods (the term) for the present value, pv, to reach 0 based on the payment,
pmt, and the interest rate, int.

In the following example, TERM3 returns the number of payments from a $15,000 annuity if the annual
interest rate is 12.5% compounded monthly and you would like to receive $300 every month. The value
of vterm3 is 71.

SET VAR vterm3 = (TERM3(300,(.125/12),15000))

7.18.7 TEXTRACT

(TEXTRACT(datetime))

Returns the time portion of DATETIME.

In the following example, the value of vtextract is 12:15:30.123.

SET VAR vtextract = (TEXTRACT('08/09/95 12:15:30.123'))

7.18.8 TINFO

(TINFO(arg1,arg2,arg3))

Returns access right information for the current user.

Where: arg1 is zero (0), which specifies to show table permissions
 arg2 is the system table ID (SYS_TABLE_ID) value (can be located in the SYS_TABLES
system table)
 arg3 can be:

a) A specific system column ID (SYS_COLUMN_ID) in that table
b) A value of 0 which means show permissions that apply to all the columns in that
table
c) A value of -1 which means show permissions that apply to any of the columns in
that table

Remarks:

· TINFO returns a comma delimited string of the access rights.
· In most instances table and column privileges are identical. Cases where they are not are

autonumber column (no INSERT), computed columns, (no INSERT or UPDATE), and where the
UPDATE privilege was granted to specific columns only.

· Permissions are returned based upon the current USER.

Examples:
The following example is based upon a database configured with an OWNER and users, where limited
permissions are supplied to a user Jim for the Component table.

While connected to the database as the OWNER, the system table ID and system column ID can be found
for the Component table and CompDesc column.

SELECT SYS_TABLE_ID FROM SYS_TABLES WHERE SYS_TABLE_NAME = 'Component'
 SYS_TABLE_ID

 29

R>SELECT SYS_COLUMN_ID FROM SYS_COLUMNS WHERE SYS_COLUMN_NAME = 'CompDesc'
 SYS_COLUMN_ID

 188

Oterro 11 Help Manual442

Copyright © 1982-2024 R:BASE Technologies, Inc.

R>SET USER JIM JIM999

Example 01:
-- Permissions for the column CompDesc

R>SET VAR vUserInfoColumn = (TINFO(0,29,188))
R>SHOW VAR vUserInfoColumn
SELECT, UPDATE

Example 02:
-- Permissions for all column. Only SELECT is returned since that is the only permission applied to all
columns.

R>SET VAR vUserInfoAllColumns = (TINFO(0,29,0))
R>SHOW VAR vUserInfoAllColumns
SELECT

Example 03:
-- Permissions for any column. Both SELECT and UPDATE are returned since there are some columns
with both of those permissions.

R>SET VAR vUserInfoAnyColumn = (TINFO(0,29,-1))
R>SHOW VAR vUserInfoAnyColumn
SELECT, UPDATE

7.18.9 TMON

(TMON(arg))

Returns the month name as text where arg is a value that has either a DATE or DATETIME data type.

In the following example, the value of vtmon is November.

SET VAR vtmon = (TMON('11/12/95'))

7.18.10 TRANSLATE

(TRANSLATE('inputstring','characters','translations','pad'))

Returns the string provided as a first argument after some characters specified in the second argument
are translated into a destination set of characters. In the process, TRANSLATE replaces a single character
at a time. For example, it will replace the 1st character in the "input string" with the 1st character in the
"replacement string". Then, it will replace the 2nd character in the "input string" with the 2nd character in
the "replacement string", and so forth. The pad parameter is optional which can be used instead of a
blank in the return string.

In the following example the square and curly braces in the input string are replaced with parentheses,
resulting with "2*(3+4)/(7-2)".

SET VAR vBracketSwitch = (TRANSLATE('2*[3+4]/{7-2}','[]{}','()()'))

In the following example the "w" and "t" replace the "8" and "7" corresponding number values in the
string. The "9" and "0" are replaced with the pad character, resulting in "123456tw..".

SET VAR vNumberText = (TRANSLATE('1234567890','8790','wt','.'))

7.18.11 TRIM

(TRIM(text))

Trims leading and trailing blanks from text, returning a text string.

R:BASE Database Functions 443

Copyright © 1982-2024 R:BASE Technologies, Inc.

In the following example, the value of vtrim is the text string ABCDE without the leading and trailing
blanks.

SET VAR vtrim = (TRIM(' ABCDE '))

7.19 U

7.19.1 ULC

(ULC(text))

Converts text from uppercase to lowercase, returning a text string.

In the following example, the value of vulc is abcde. To ensure that your data is consistent, whether it is
imported from outside R:BASE or entered through an R:BASE form, use ULC to convert text fields to
lowercase.

SET VAR vulc = (ULC('ABCDE'))

Part

VIII

R:BASE Reference Topics 445

Copyright © 1982-2024 R:BASE Technologies, Inc.

8 R:BASE Reference Topics

8.1 Aggregate Functions

An aggregate function can be used to provide summary data about a rows in a table or for a provided list
of values.

Function Supported Areas Description

AVG SELECT, LAVG, Data Browser, Query
Wizard, Query Builder,
Form/Report/Label Expressions

Computes the numeric average. R:BASE rounds
averages of integer values to the nearest integer
value and currency values to their nearest unit.

COUNT SELECT, Data Browser, Query Wizard,
Query Builder, Form/Report/Label
Expressions

Determines how many non-null entries there are
for a particular column item.

LISTOF SELECT, Query Builder,
Form/Report/Label Expressions

Creates a text string of the values separated by
the current comma delimiter character. The
LISTOF function can be used with to populate a
variable with a list of values from multiple rows.

MAX SELECT, LMAX, Data Browser, Query
Wizard, Query Builder,
Form/Report/Label Expressions

Selects the maximum numeric, time, date, or
alphabetic value in a column.

MIN SELECT, LMIN, Data Browser, Query
Wizard, Query Builder,
Form/Report/Label Expressions

Selects the minimum numeric, time, date, or
alphabetic value in a column.

STDEV SELECT, Data Browser, Query Builder Computes standard deviation. The standard
deviation is a measure of how widely values are
dispersed from the average value.

SUM SELECT, LAVG, Data Browser, Query
Wizard, Query Builder,
Form/Report/Label Expressions

Computes the numeric sum.

VARIANCE SELECT, Data Browser, Query Builder Determines variance.

* Selecting aggregate functions, such as MIN and MAX, requires that R:BASE keeps an accumulator and
choose to only use the first 80 characters for NOTE values. This matches the fact that if you sort on NOTE
fields, the sort will be based on the first 80 characters only.

8.2 Binary Large Objects (BLOB)

Binary Large Objects or BLOBs refer to images that you can store within your R:BASE database. In
earlier Windows versions of R:BASE, the ability to add and manipulate large object data was relatively
limited. However, with the latest Windows releases an integrated utility, the R:BASE BLOB Editor, has
extended the functionality many times over.

You can add, edit, or delete Binary Large Objects (BLOBs) within your database files. The recommended
table data type to store images is VARBIT. The R:BASE BLOB Editor has also been enhanced to manage
Multipage Images. This enhancement will allow users to manage multipage images, such as .DCX, .GIF,
or .TIFF files, when saved as BLOB data in R:BASE.

The R:BASE BLOB Editor also works with your large ASCII data files (Large Objects or LOBs). These
objects refer to text files that can be in any ASCII format, including RTF. The recommended table data
type for large text files is VARCHAR.

The data for VARBIT and VARCHAR data types is stored in the fourth R:BASE database file.

See also:

Data Types

Oterro 11 Help Manual446

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.2.1 Loading BLOB/LOB Data

You can easily load VARBIT and/or VARCHAR data into R:BASE tables directly from the Data Browser.

1. Open any table in the Data Browser where there are column(s) with VARBIT and/or VARCHAR data
types

2. Press the [F4] key to turn the Data Browser into the Data Editor
3. Move your cursor focus to the column cell and right click on the field
4. From the speed menu, choose "Load From External File"
5. Browse and select the appropriate image/data file and then click on the "Open" button
6. The image/data file is now stored in the table row
7. To verify, double click the field to open the "R:BASE BLOB Editor". Notice that the appropriate tab is

specified based on the type of data file you loaded.

8.2.2 Using Commands with BLOBs

Use the INSERT or LOAD commands to add binary large objects to your database. After the binary large
object is loaded, the file is in the database, so you do not need the disk file. Following is an example of
an INSERT command that adds a binary large object to a database:

INSERT INTO IMAGES (ID, IMAGEDATA) VALUES +
(1, ['filename.bmp'])

Binary large objects can be placed for viewing in forms and reports by placing the column or variable
containing the binary large object in the form or report. When you run a form, you can enter or edit a
reference to a binary large object by pressing [Shift] + [F10]. In an application program, you can use the
SET VARIABLE command to define a variable that is equal to the file name that contains the binary large
object.

You can write a variable that has a VARBIT or VARCHAR data type back to a file using the WRITE
command, for example:

WRITE .v1 TO filename

The BACKUP and UNLOAD commands create a file with a .LOB extension for binary large objects, and a
file for the data and/or structure.

See also:

Data Types

SELECT

8.3 Configuration File

Name: OTERRO11.CFG

The configuration file defines the Oterro database default configuration. Each time you start the Oterro
database, OTERRO11.CFG sets the database operating environment by configuring multi-user functions,
special character and operating conditions, and how the database processes and displays information.

If OTERRO11.CFG is not on the current drive and directory, or on the current path when you load the
Oterro database, the database loads the default settings and creates a new OTERRO11.CFG file in the
current directory.

R:BASE Reference Topics 447

Copyright © 1982-2024 R:BASE Technologies, Inc.

OTERRO11.CFG is an ASCII file that you can edit with any ASCII text editor. This file contains comment
lines, and startup settings. To change a startup setting, edit the appropriate line in the file. Changes
saved to OTERRO11.CFG take effect the next time you start the Oterro database.

The following settings: MULTI, STATICDB, TRANSACT, and FASTLOCKS must be set before connecting to
a database, therefore they cannot be set using the SET command SQLExecDirect. They must be set in
the OTERRO11.CFG file or with SQLSetConnectOption.

The Oterro database special characters, case-folding, and case-sensitive character tables are stored in
the database; when a database is connected, the database settings override the OTERRO11.CFG setting.

The following table includes examples of settings that are found in the OTERRO11.CFG file. The settings
you can change are not limited to the settings included in this table.

Configuration Startup Options

Option Looks Like Purpose

Multi-user switch MULTI ON Turns the Oterro database multi-
user features on or off.

SET keyword settings DELIMIT=',' ZERO ON Sets the Oterro database special
characters and operating
conditions; enclose the special
character setting in quotes.

Case folding table CASEP 97 65 Establishes correspondences
between uppercase and lowercase
characters.

Case sensitive collating
table

COLLATEC 66 83 COLLATEC 67 87 Used when creating indexes for
TEXT data types.

Collating table COLLATE 97 65 COLLATE 192 65 Performs sorting and equality
testing (>, >=, <, and, <=)

Expansion character table EXPAND 132 97 101 EXPAND 142 65
69

Maps pairs of characters to each
other to be treated as synonymous
characters.

Character folding table LCFOLD 65 97 Relates uppercase to lowercase
characters for use in the string
manipulation functions ULC, LUC,
ICAP1, and ICAP2.

8.4 Constraints

To control the data that enters your database, you can apply powerful data-integrity rules called
constraints. By applying a constraint to a column, you can prevent irreconcilable and empty data from
being entered. R:BASE uses the following constraints:

· Primary Key - A column or set of columns that uniquely identify a row; in other words, each value in
a primary key column is unique. A primary-key constraint prevents duplicate (non-unique) and null
values from being entered. Even if you do not specifically define a constraint, all tables (in a well-
designed database) should have a primary key. You can define one primary key per table.

· Foreign Key - A column or set of columns that match values in a particular primary key or unique
key defined in a different table. A value cannot be inserted or changed.

· Unique Key - A column or set of columns that uniquely identify a row; in other words, each value in a
unique-key column is unique. A unique-key constraint prevents duplicate (non-unique) and null values
from being entered. The only difference between a unique key and a primary key is that you can
define multiple unique keys per table.

· Unique Index - A column or set of columns that uniquely identify a row, but cannot be referenced like
a primary key or unique key. The differences between a unique key and a unique index is that the
unique key must be defined a Not NULL.

Oterro 11 Help Manual448

Copyright © 1982-2024 R:BASE Technologies, Inc.

· Not NULL - Placing a not null constraint on a column requires that the data in the column must contain
a value, and cannot be null. This prevents users from adding a "blank" value. A not null constraint
cannot be added if the column already contains null values.

Constraints cannot be turned off and are always enforced; you must delete the constraint if you do not
want it. However, because R:BASE works with constraints faster, use constraints instead of rules when
possible.

You can remove constraints from columns. If you want to remove a primary- or unique-key constraint,
you must first remove the foreign-key constraints that refer to it.

See also:

ALTER TABLE
CREATE INDEX
SET FASTFK

8.5 Cursors Explained

A cursor is a valuable programming tool. It is a pointer to rows in a table. A cursor lets you step through
rows one by one, performing the same action on each row. You can set a cursor to point to all the rows
in a table or to a subset of rows. A cursor is set using the DECLARE CURSOR command.

The DECLARE CURSOR command does not work by itself, but is really a sequence of commands. In
addition to the DECLARE CURSOR, the OPEN and FETCH commands are required. A WHILE loop is used
to step through the rows and perform the programmed action on each row. The CLOSE or DROP
command is used after the cursor has stepped through all the rows.

The basic sequence of commands for a cursor is as follows:

DECLARE c1 CURSOR FOR +
SELECT custid, company FROM customer

OPEN c1
FETCH c1 INTO vcustid1 INDI ind1, vcompany INDI ind2
WHILE SQLCODE <> 100 THEN

-- Place code for row by row actions here.
FETCH c1 INTO vcustid1 INDI ind1, vcompany INDI ind2

ENDWHILE
DROP CURSOR c1

The DECLARE CURSOR command names the cursor and defines the set of rows. The cursor name is then
used in the OPEN, FETCH, CLOSE, and DROP commands that reference it. A cursor name can be up to 18
characters long and follows the same naming conventions as all other names in R:BASE.

More than one cursor can be defined and open at a time. SELECT is used in the DECLARE CURSOR to
identify the rows to step through. The SELECT part of a cursor declaration can point to rows from a single
table or from multiple tables, and can choose all or only some of the columns from a table. You can use
the GROUP BY clause as well as the WHERE and ORDER BY clauses of SELECT.

The OPEN command initializes the cursor and tells R:BASE you are ready to retrieve a row of data from
the cursor. The OPEN command positions the cursor at the first row of the set of data defined by the
SELECT in the cursor declaration.

The FETCH command retrieves a row of data into the specified variables. The number of variables must
match the number of columns listed in the SELECT part of the DECLARE CURSOR command. Each
variable has a corresponding indicator variable, which tells if a NULL value was retrieved. The list of
variable pairs - data variable and indicator variable - is separated by commas.

The FETCH command sets SQLCODE, the SQL error variable. If a row was retrieved, SQLCODE is set to
0. After the last row is retrieved, FETCH sets SQLCODE to 100 - no more data. Using SQLCODE as the

R:BASE Reference Topics 449

Copyright © 1982-2024 R:BASE Technologies, Inc.

condition for the WHILE loop lets you easily retrieve and act on each successive row. Placing a second
FETCH command immediately before the ENDWHILE command keeps fetching rows until the end of data
is reached. Then the loop exits.

Within the WHILE loop, place whatever commands are needed to operate on each row. You can look up
additional data, perform mathematical calculations, update data, and so on.

When the cursor completes and the WHILE loop is exited, the cursor is dropped with the DROP CURSOR
command. A cursor name must be dropped before it can be declared again. DROP removes a cursor
definition from memory; to use the cursor again, it must be declared with the DECLARE CURSOR
command. CLOSE leaves a cursor definition in memory; to use the cursor again, it is opened with the
OPEN command. After a cursor has been closed, an OPEN repositions the pointer at the first row of the
cursor definition. CLOSE is most often used with nested cursors, DROP with individual cursors.

When a cursor is open, you can use a special WHERE clause option, WHERE CURRENT OF cursorname.
This WHERE clause works with the UPDATE, DELETE, and SELECT commands to perform the specified
action on the row the cursor is currently pointing at. The DELETE deletes the entire row; the SELECT, and
UPDATE only operate on columns included in the SELECT part of the DECLARE CURSOR command. Note
that not every cursor definition supports use of the WHERE CURRENT OF cursorname.

It is not required to use the WHERE CURRENT OF cursorname in your WHERE clause. A WHERE clause
that explicitly points to a row of data using values stored in variables can be used. The unique row
identifier is fetched into a variable, then that value is used to access rows in the cursor table or other
tables.

-- The special WHERE clause WHERE CURRENT OF
-- points to the current row of the cursor.
SELECT custid, company FROM customer +
WHERE CURRENT OF c1

UPDATE customer SET custid = (custid + 1000) +
WHERE CURRENT OF c1

DELETE FROM customer WHERE CURRENT OF c1

-- Alternatively, use an explicit WHERE
-- clause to access a row.

SELECT custid, company FROM customer +
WHERE custid = .vcustid

UPDATE customer SET custid = (custid + 1000) +
WHERE custid = .vcustid

DELETE FROM customer WHERE custid = .vcustid

This is the basic cursor structure. Other types of cursors and cursor structures that are used are: multi-
table cursors, non-updatable cursors, nested cursors, resettable cursors, and scrolling cursors. Each is
briefly described below.

8.5.1 Multi-Table Cursors

A multi-table cursor includes more than one table in the SELECT part of the cursor declaration. The tables
can be linked directly within the DECLARE CURSOR command; avoiding steps to define a view to retrieve
data from more than one table.

The DECLARE CURSOR command has the full capabilities of the SELECT command to do multi-table
queries. As with the SELECT command itself, you list the columns to retrieve, the tables to get the data
from, then link the tables in the WHERE clause. For example,

-- Select data from both the Customer
-- and Transmaster tables.

Oterro 11 Help Manual450

Copyright © 1982-2024 R:BASE Technologies, Inc.

DECLARE C1 CURSOR FOR SELECT +
custid, company, transid, transdate, invoicetotal +

FROM customer, transmaster +
WHERE customer.custid = transmaster.custid

OPEN C1

-- The fetch retrieves all the specified columns into variables.
FETCH C1 INTO vcustid1 INDI ind1, vcompany INDI ind2 +

vtransid INDI ind3, vtransdate INDI ind4, vinvoicetotal INDI ind5
WHILE SQLCODE <> 100 THEN

-- Place code for row by row actions here.
-- An explicit WHERE clause must be used,
-- WHERE CURRENT OF is not supported with
-- multi-table cursors.

-- Get the next row
FETCH C1 INTO vcustid1 INDI ind1, vcompany INDI ind2 +

vtransid INDI ind3, vtransdate INDI ind4, vinvoicetotal INDI ind5
ENDWHILE
DROP CURSOR C1

Notice that the basic structure of the cursor commands doesn't change. You still declare the cursor, open
it, fetch the first row, then use a WHILE loop to step through each row. There is no limit to the number of
tables that can be included in a DECLARE CURSOR command. The tables are joined together in the same
way they are joined with a regular SELECT command.

A multi-table cursor definition is a non-updatable cursor, however. You cannot update the cursor directly
by using WHERE CURRENT OF cursorname. You must use explicit WHERE clauses to access the cursor
tables.

8.5.2 Non-Updatable Cursors

A non-updatable cursor is one that does not support use of the special WHERE clause WHERE CURRENT
OF cursorname. An explicit WHERE clause must be used to access data in the tables.

A non-updatable cursor is a multi-table cursor, or a cursor that is defined, for example, using the GROUP
BY clause. The SELECT command that defines the cursor rows does not allow the cursor to point back to
a single specific row in a table.

Non-updatable cursors are a very useful part of the DECLARE CURSOR structure. Use the power of the
SELECT command in the DECLARE CURSOR declaration to dramatically improve the performance of a
cursor. The more work the cursor does, the less your program has to do and the faster and more
efficiently it will run.

When using a non-updatable cursor, make sure you fetch a unique row identifier for use in WHERE
clauses.

8.5.3 Nested Cursors

A nested cursor involves two DECLARE CURSOR definitions. The second cursor is dependent on the first
and its cursor definition uses a variable value fetched by the first cursor.

There is a specific structure recommended for nested cursors - a row is retrieved from cursor one, then
the matching rows in cursor two are retrieved and stepped through. Then the next row is retrieved from
cursor one and its matching rows from cursor two are stepped through. The process continues until all
rows have been retrieved from cursor one.

Example

R:BASE Reference Topics 451

Copyright © 1982-2024 R:BASE Technologies, Inc.

-- The DECLARE commands are done together
-- at the top of the program.
-- An OPEN cursor does not need to immediately
-- follow the corresponding DECLARE CURSOR command
SET VAR vcustid INTEGER
DECLARE c1 CURSOR FOR SELECT custid, company +

FROM customer ORDER BY company
-- The second cursor uses a variable in the
-- WHERE clause. This variable, vcustid, must be
-- defined earlier in the program.
-- The cursor retrieves rows for a single customer only
DECLARE c2 CURSOR FOR +

SELECT custid, contfname, contlname +
FROM contact WHERE custid = .vcustid

-- Cursor c1 is opened and the first row retrieved
-- from the Customer table
OPEN c1
FETCH c1 INTO vcustid1 INDI ind1, vcompany INDI ind2
WHILE SQLCODE <> 100 THEN

-- Cursor c2 is opened, it points to all the
-- rows in the Contact table that match the
-- custid fetched into vcustid by cursor c1.
OPEN c2

-- Get the first row from the contact table and step
-- through all matching rows.
FETCH c2 INTO vcustid1 INDI ind1, vfirstname INDI ind2, +

vlastname INDI ind3
WHILE SQLCODE <> 100 THEN

-- Place code here to do row by row actions

--Get the next row for cursor c2
FETCH c2 INTO vcustid1 INDI ind1, vfirstname INDI ind2, +

vlastname INDI ind3
ENDWHILE

-- After all the matching rows in the contact table
-- have been processed, close cursor c2 and get the
-- next row from the Customer table.
-- Cursor c2 is closed and not dropped because
-- the definition will be reused for the next
-- row from cursor c1.
CLOSE c2

-- Get the next row for cursor c1
FETCH c1 INTO vcustid1 INDI ind1, vcompany INDI ind2

ENDWHILE

-- Both cursors are dropped when all the rows
-- in the Customer table have been retrieved.
DROP CURSOR c2
DROP CURSOR c1

You can use the same WHILE loop condition, SQLCODE <> 100, for both cursors. This works very well
and there is no conflict between the two loops. The relative FETCH command sets the value of SQLCODE.

Oterro 11 Help Manual452

Copyright © 1982-2024 R:BASE Technologies, Inc.

Notice that the FETCH from cursor c2 is right before the ENDWHILE of the inner WHILE loop ensuring that
that FETCH command is the one being tested by the WHILE loop. The FETCH from cursor c1 is right
before the ENDWHILE of the outer WHILE loop, which then continues based on cursor c1. This placement
of the DECLARE, OPEN, FETCH, WHILE, and ENDWHILE statements will always work. Just make sure the
ENDWHILE is the next command after the FETCH.

With nested cursors, the inner cursor is closed and opened so that it always references the matching
rows from the outer cursor. An alternative to opening and closing the inner cursor is to use the RESET
option on the OPEN command.

8.5.4 Resettable Cursors

A DECLARE CURSOR can use a variable in its WHERE clause. Each time the cursor is opened, the WHERE
clause is reevaluated using the current variable value and identifies a new set of data.

You can CLOSE and OPEN a defined cursor, or use the OPEN cursorname RESET command. Don't use the
CLOSE command if you place the RESET option on the OPEN command. The RESET option automatically
reevaluates the variable value and identifies a new set of data for the cursor.

OPEN cursorname RESET is commonly used with nested cursors. The second cursor is dependent on a
variable fetched by the first cursor. By using RESET, you won't need to CLOSE the inner cursor each
time.

Using the RESET option on OPEN is faster using than the OPEN, CLOSE sequence of commands.

8.5.5 Scrolling Cursors

Normally, cursors move through the data in one direction only, from top to bottom. They move forward
one-by-one through the set of defined rows. Once a row has been accessed and passed over, you can't
get back to it. The rows can be ordered in the cursor definition - the top to bottom order is not
necessarily the table order.

When a cursor is defined as a scrolling cursor, you gain the capability of moving both forwards and
backwards through the rows of data and can also jump past rows.

To define a cursor as a scrolling cursor, include the word SCROLL in the DECLARE CURSOR command.
For example,

DECLARE c1 SCROLL CURSOR FOR SELECT ...

The word SCROLL comes right after the cursor name. If SCROLL is not included in the cursor definition,
the cursor can only move forward through the rows one at a time.

Once a cursor is defined as a scrolling cursor, a number of additional options on the FETCH command
become available. These options are as follows; note that the directions and positions are based on the
order of the rows as specified by the DECLARE CURSOR command, not on the order of the rows in the
actual table:

NEXT - The default option if none is specified on the FETCH command. NEXT moves the cursor forward
through the rows, it gets the next available row based on the current cursor position. NEXT steps through
the rows one-by-one going forward.

PRIOR - Moves the cursor backwards through the rows. The PRIOR option gets the previous row based
on the current cursor position, and steps through the rows one-by-one going backwards.

FIRST - Moves the cursor from its current position to the first row. This option jumps immediately to the
first row as determined by the DECLARE CURSOR command. A FETCH NEXT then finds the second row.
The cursor is repositioned at the beginning of the set of rows.

LAST - Moves the cursor from its current position immediately to the last row as specified by the
DECLARE CURSOR command. A FETCH PRIOR then finds the next to last row; a FETCH NEXT returns
"end of data encountered". LAST jumps over the rows between the current cursor position and the last
row.

R:BASE Reference Topics 453

Copyright © 1982-2024 R:BASE Technologies, Inc.

ABSOLUTE n - Moves the cursor the specified number of rows from the first row of data as determined
by the DECLARE CURSOR and OPEN commands. A positive number must be specified; you can't use this
option to move backwards. The intervening rows are jumped over. You can't jump past the last row; if
the number given is greater than the number of rows retrieved, an "end of data" error is returned.

RELATIVE n - Moves the cursor the specified number of rows from the current cursor position. This
option moves the cursor either forwards or backwards - forwards if a positive number is specified,
backwards if a negative number is specified. The intervening rows are jumped over. You can't jump past
the last row or the first row; an "end of data" error is returned if the specified number would take you
past the beginning or end of the selected rows.

Example
To see how a scrolling cursor can be used in an application, imagine you have a group of customers to
contact each day. The scrolling cursor retrieves the list of customers for today. They are ordered by
company name. The first row is brought up in a menuless form. The form remains on the screen when
you are done with the record, and a CHOOSE menu pops up giving the user choices as to which record to
select next.

You can: move through the list of customers one-by-one, both forwards and backwards, jump to the last
record and back to the first record, jump past a group of records, and search for a particular record by
last name or by company name

Each time you select a record, the cursor is repositioned ready for the next selection.

--WALKLIST.RMD
--scroll through a list of customers
SET MESSAGE OFF
SET ERROR MESSAGE OFF
SET VAR vCheckCursor INTEGER = (CHKCUR('c1'))
IF vCheckCursor = 1 THEN
 DROP CURSOR c1
ENDIF
CLS

--Define the scrolling cursor
DECLARE C1 scroll CURSOR FOR +

SELECT CustId, LastName, Company FROM Customer +
WHERE calldate = .#DATE ORDER BY Company

--Open the cursor and get the first row
OPEN C1
FETCH FIRST FROM C1 INTO +

VCustId INDI ICustId, VLastname INDI ILastname, VCompany INDI ICompany
WHILE SQLCODE <> 100 THEN

--Bring up the form with the data from the first row.
--After the form is closed, choose from the menu which record to retrieve next
EDIT USING CustForm WHERE CustId = .VCustId
CHOOSE VAction FROM #LIST +

'Next Customer,Previous Customer,Jump Forward "n",Jump Backward "n",+
Last Customer,First Customer,Search by Last Name,Search by Company' +
TITLE 'Select Customer' CAPTION 'Choose' LINES 8 FORMATTED

IF VAction = '[Esc]' THEN
RETURN

ENDIF

--The switch/case block determines which record to retrieve
SWITCH (.VAction)

--Move forward one row at a time

Oterro 11 Help Manual454

Copyright © 1982-2024 R:BASE Technologies, Inc.

CASE 'Next Customer'
FETCH NEXT FROM C1 INTO +

VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

--If already on the last row, stay there
IF SQLCODE = 100 THEN

FETCH LAST FROM C1 INTO +
VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

ENDIF
BREAK

--Move backward one row at a time
CASE 'Previous Customer'

FETCH PRIOR FROM C1 INTO +
VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

--If already on the first row, stay there
IF SQLCODE = 100 THEN

FETCH FIRST FROM C1 INTO +
VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

ENDIF
BREAK

--Move forward the specified number of records
CASE 'Jump Forward "n"'

DIALOG 'How many to jump forward?' VNum=4 VEndKey 1
SET VAR VPlus = (INT(.VNum))

 --R:BASE counts from the current cursor position
FETCH RELATIVE .vplus FROM C1 INTO +

VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

--If the number of records to jump past takes you beyond the last
--record, the last record is retrieved
IF SQLCODE = 100 THEN

FETCH LAST FROM C1 INTO +
VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

ENDIF
BREAK

--Move backward the specified number of records
CASE 'Jump Backward "n"'

DIALOG 'How many to jump backward?' VNum=4 VEndKey 1
SET VAR VMinus = (INT(.VNum) * -1)

--R:BASE counts from the current cursor position
FETCH RELATIVE .vminus FROM C1 INTO +

VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

--If the number of records to jump past takes you beyond the first
--record, the first record is retrieved

R:BASE Reference Topics 455

Copyright © 1982-2024 R:BASE Technologies, Inc.

IF SQLCODE = 100 THEN
FETCH FIRST FROM C1 INTO +

VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

ENDIF
BREAK

--Jump to the last record Next customer from the last record returns end-of-
data
CASE 'Last Customer'

FETCH LAST FROM C1 INTO +
VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

BREAK

--Jump to the first record Prior customer from the first record returns end-of-
data
CASE 'First Customer'

FETCH FIRST FROM C1 INTO +
VCustId INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

BREAK

--Prompt for the last name to find
CASE 'Search by Last Name'

SET VAR vsearch = NULL
DIALOG 'Enter the last name to find' +

VSearch VEndKey 1
IF VEndKey = '[Esc]' THEN

BREAK
ENDIF

WHILE #PI <> 0.0 THEN

--Search forward for a matching record
FETCH NEXT FROM c1 INTO +

VCustID INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

--If a match is found, the row is displayed and the cursor repositioned
--at that row
IF VLastname CONTAINS .VSearch THEN

BREAK
ENDIF

--If no match was found, the search can be continued from the first row.
IF SQLCODE = 100 THEN

DIALOG 'No match found. Continue search from beginning?' +
VResp VEndKey YES

IF VEndKey = '[Esc]' THEN
BREAK

ENDIF

IF VResp = 'YES' THEN
FETCH FIRST FROM c1 INTO +

VCustID INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

IF VLastname CONTAINS .VSearch THEN

Oterro 11 Help Manual456

Copyright © 1982-2024 R:BASE Technologies, Inc.

BREAK
ENDIF

ELSE
--If the search is not continued, the last row is retrieved
FETCH LAST FROM c1 INTO +

VCustID INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

BREAK
ENDIF

ENDIF
ENDWHILE
BREAK

--Prompt for the company name to find
CASE 'Search by Company'

SET VAR VSearch = NULL
DIALOG 'Enter the company to find' +

VSearch VEndKey 1
IF VEndKey = '[Esc]' THEN

BREAK
ENDIF

--Search forward for a matching company record If a match is found,
--the row is displayed and the cursor repositioned at that row
WHILE #PI <> 0.0 THEN

FETCH NEXT FROM c1 INTO +
VCustID INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

IF VCompany CONTAINS .VSearch THEN
BREAK

ENDIF

--If no match was found, the search can be continued from the first row.
IF SQLCODE = 100 THEN

DIALOG 'No match found. Continue search from beginning?' +
VResp VEndKey YES

IF VEndKey = '[Esc]' THEN
BREAK

ENDIF
IF VResp = 'YES' THEN
FETCH FIRST FROM c1 INTO +

VCustID INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

IF VCompany CONTAINS .VSearch THEN
BREAK

ENDIF
ELSE

--If the search is not continued, the last row is retrieved.
FETCH LAST FROM c1 INTO +

VCustID INDI ICustId, VLastname INDI ILastname, +
VCompany INDI ICompany

BREAK
ENDIF

ENDIF
ENDWHILE
BREAK

ENDSW

R:BASE Reference Topics 457

Copyright © 1982-2024 R:BASE Technologies, Inc.

ENDWHILE
DROP CURSOR C1
RETURN

8.5.6 Optimizing Cursors

DECLARE CURSOR is not always the fastest way to accomplish a task, particularly an UPDATE or an
INSERT. If you can replace your DECLARE CURSOR routine with a single SQL command, you will
dramatically improve performance. However, some tasks require a DECLARE CURSOR.

Let the cursor do the work
To improve the performance of a DECLARE CURSOR routine, do as much work in the DECLARE CURSOR
as possible. This is the single most important factor in improving cursor performance. Do whatever work
can be done in the SELECT command part of the DECLARE CURSOR - select as many columns of data as
possible and also do calculations there if you can. The DECLARE CURSOR does the operation only once;
inside the WHILE loop, the command is repeated for each row that is stepped through.

To do actions for unique rows only, use SELECT DISTINCT in the cursor definition instead of adding code
to your WHILE loop to test the row values to see if they are the same or different. Use the SELECT
functions to sum, average, count and so on in the cursor definition instead of for each row in the WHILE
loop. Select as many columns as possible in the DECLARE CURSOR rather than retrieve the data each
row in the WHILE loop.

The fewer commands repeated in the WHILE loop, the faster your DECLARE CURSOR will run. Remember
that each command in the WHILE loop is repeated for each row retrieved by the DECLARE CURSOR. Use
optimized variables in the WHILE loop -initialize each variable outside the WHILE loop, and do not change
the data type of variables in the loop.

Following are two examples showing progressive changes made to a DECLARE CURSOR routine to
improve performance.

Example 1 - posting. The task is to sum the extended price column in the transaction detail, Transdetail,
table for each transaction ID, then update the transaction header, Transmaster, table with the sum. An
initial approach is to declare a cursor on the header table, then step through all matching rows in the
detail table. After all the matching detail rows have been processed, the header table is updated.

*(POST1.RMD -- the worst case)
-- nested declare cursors
-- strictly linear programming
SET VAR vtotal CURR
DECLARE c1 CURSOR FOR SELECT transid, netamount +

FROM transmaster
OPEN c1
FETCH c1 INTO vtransid INDI vind1, vnetamount INDI vind2
WHILE SQLCODE <> 100 THEN

DECLARE c2 CURSOR FOR SELECT extprice +
FROM transdetail WHERE transid = .vtransid

OPEN c2
FETCH c2 INTO vprice INDI vind3
WHILE SQLCODE <> 100 THEN

SET VAR vtotal = (.vtotal + .vprice)
FETCH c2 INTO vprice INDI vind3

ENDWHILE
DROP CURSOR c2
UPDATE transmaster SET netamount = .vtotal +

WHERE CURRENT OF c1
SET VAR vtotal = NULL
FETCH c1 INTO vtransid INDI vind1, vnetamount INDI vind2

ENDWHILE
DROP CURSOR c1

Oterro 11 Help Manual458

Copyright © 1982-2024 R:BASE Technologies, Inc.

We can speed up this code by following the recommended structure for nested cursors. If we move the
second DECLARE CURSOR out of the WHILE loop and reset the cursor instead of dropping it, this
command file will execute faster. However, the best way to improve this code is by removing the second
DECLARE CURSOR altogether. We don't need to step through all the rows in the detail table - we can
compute the sum with a single SELECT command.

*(POST2.RMD - a little bit better)
-- use the SELECT or COMPUTE command
-- to calculate the sum instead of a nested cursor
SET VAR vprice CURR = NULL
DECLARE c1 CURSOR FOR SELECT transid, netamount +

FROM transmaster
OPEN c1
FETCH c1 INTO vtransid INDI vind1, vamount INDI vind2
WHILE SQLCODE <> 100 THEN

SELECT SUM(extprice) INTO vprice +
FROM transdetail WHERE transid = .vtransid

-- if no matching rows in the Transdetail table,
-- vprice is null
IF vprice IS NOT NULL THEN

UPDATE transmaster SET netamount = .vprice +
WHERE CURRENT OF c1

ENDIF
SET VAR vprice = NULL
FETCH c1 INTO vtransid INDI vind1, vamount INDI vind2

ENDWHILE
DROP CURSOR c1

This simple change reduced the number of commands in the program, which in turn improved
performance. All the commands inside the WHILE loop still need to be executed for as many rows as are
in the Transmaster table, however. The Transmaster table has fewer rows than the Transdetail table, so
a valid assumption is to place the cursor on the Transmaster table to repeat the WHILE loop the fewest
times.

However, if we place the cursor on the detail table instead of on the header table, the sum can be
calculated directly in the DECLARE CURSOR. Because the command is grouped by the transaction ID, the
same number of rows is retrieved by the cursor. The only commands to repeat in the WHILE loop are the
UPDATE and the FETCH to get the next row. At first this might seem backwards, but computing the sum
in the DECLARE CURSOR is much faster.

*(POST3.RMD - better yet)
-- declare the cursor on the detail table and
-- do the sum directly in the cursor definition
DECLARE c1 CURSOR FOR SELECT transid, SUM(extprice) +

FROM transdetail GROUP BY transid
OPEN c1
FETCH c1 INTO vtransid INDI vind1, vprice INDI vind2
WHILE SQLCODE <> 100 THEN

-- this is a non-updatable cursor so an explicit
-- WHERE clause is used
UPDATE transmaster SET netamount = .vprice +

WHERE transid = .vtransid
FETCH c1 INTO vtransid INDI vind1, vprice INDI vind2

ENDWHILE
DROP CURSOR c1

The number of commands has been reduced by over half from the first program, and performance by
more than that. The multi-table update command is actually the fastest way to accomplish this task.

R:BASE Reference Topics 459

Copyright © 1982-2024 R:BASE Technologies, Inc.

*(POST4.RMD - do a multi-table update if you can)
-- multi table update command, a view is used
-- to first calculate the sum and create a
-- one-one relationship
DROP VIEW v_trans
CREATE VIEW v_trans (transid, amount) AS +

SELECT transid, SUM(extprice) +
FROM transdetail GROUP BY transid

UPDATE transmaster SET netamount = amount +
FROM transmaster ,v_trans t2 +
WHERE transmaster.transid = t2.transid

Example 2 - a quick report. The task here is to create a quick report of companies from the Customer
table and their corresponding contact names from the Contact table. Using nested cursors makes printing
the company information once followed by the many rows of contact information easier.

*(CUSTREP1.RMD - the worst case)
-- nested cursors are used with the declare for
-- the second cursor inside the while loop of
-- the first cursor. Also, the data is retrieved
-- with a SELECT command instead of in the
-- cursor definition

-- Dropping a cursor before you declare it is a
-- technique used to guarantee that the cursor does
-- not exist in memory. The DROP CURSOR normally
-- returns an error message, so check to verify it
-- exists before dropping it.
SET VAR vCheckCursor1 INTEGER = (CHKCUR('c1'))
IF vCheckCursor1 = 1 THEN
 DROP CURSOR c1
ENDIF
SET VAR vCheckCursor2 INTEGER = (CHKCUR('c2'))
IF vCheckCursor2 = 1 THEN
 DROP CURSOR c2
ENDIF

-- Only the unique row identifier is specified in
-- the cursor definition
DECLARE c1 CURSOR FOR SELECT custid FROM customer +

ORDER BY custid
OPEN c1
FETCH c1 INTO vcustid INDI ind1
WHILE SQLCODE <> 100 THEN

-- Retrieve and display the rest of the
-- data for a customer
SELECT company, custaddress, custcity, +

custstate, custzip, custphone INTO +
vcompany INDI vi1, vaddress INDI vi2, +
vcity INDI vi3, vstate INDI vi4, +
vzipcode INDI vi5, vphone INDI vi6 +
FROM customer WHERE custid = .vcustid

SET VAR vcsz = (.vcity + ',' & .vstate & .vzipcode)
WRITE .vcustid, .vcompany
WRITE .vaddress
WRITE .vcsz

Oterro 11 Help Manual460

Copyright © 1982-2024 R:BASE Technologies, Inc.

-- Declare a cursor to identify matching contact rows
DECLARE c2 CURSOR FOR SELECT contfname, contlname +

FROM contact WHERE custid = .vcustid
OPEN c2
FETCH c2 INTO vfname INDI i1, vlname INDI i2
WHILE SQLCODE <> 100 THEN

SET VAR vfullname = (.vfname & .vlname)
WRITE .vfullname
FETCH c2 INTO vfname INDI i1, vlname INDI i2

ENDWHILE
DROP CURSOR c2
FETCH c1 INTO vcustid INDI ind1

ENDWHILE
DROP CURSOR c1

The next code segment shows the recommended structure for nested cursors. The second DECLARE
CURSOR is moved to the top of the program, and the second cursor is opened and closed, not declared
and dropped. Just this simple change improves performance.

*(CUSTREP2.RMD - move cursor out of WHILE loop)
SET VAR vCheckCursor1 INTEGER = (CHKCUR('c1'))
IF vCheckCursor1 = 1 THEN
 DROP CURSOR c1
ENDIF
SET VAR vCheckCursor2 INTEGER = (CHKCUR('c2'))
IF vCheckCursor2 = 1 THEN
 DROP CURSOR c2
ENDIF

SET VAR vcustid INTEGER
DECLARE c1 CURSOR FOR SELECT custid +

FROM customer ORDER BY custid
DECLARE c2 CURSOR FOR SELECT contfname, contlname +

FROM contact WHERE custid = .vcustid

-- Get the first row of data for a customer
OPEN c1
FETCH c1 INTO vcustid INDI ind1
WHILE SQLCODE <> 100 THEN

-- Retrieve and display the rest of the
-- data for a customer
SELECT company, custaddress, custcity, +

custstate, custzip, custphone INTO +
vcompany INDI vi1, vaddress INDI vi2, +
vcity INDI vi3, vstate INDI vi4, +
vzipcode INDI vi5, vphone INDI vi6 +
FROM customer WHERE custid = .vcustid

SET VAR vcsz = (.vcity + ',' & .vstate & .vzipcode)
WRITE .vcustid, .vcompany
WRITE .vaddress
WRITE .vcsz

-- Open cursor c2, retrieve and display
-- the matching contact data
OPEN c2
FETCH c2 INTO vfname INDI i1, vlname INDI i2
WHILE SQLCODE <> 100 THEN

R:BASE Reference Topics 461

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET VAR vfullname = (.vfname & .vlname)
WRITE .vfullname
FETCH c2 INTO vfname INDI i1, vlname INDI i2

ENDWHILE

-- Close cursor c2 and get the next row of
-- customer data
CLOSE c2
FETCH c1 INTO vcustid INDI ind1

ENDWHILE
DROP CURSOR c1
DROP CURSOR c2

Moving the data retrieval to the DECLARE CURSOR command instead of using a separate SELECT
command again improves performance.

*(CUSTREP3.RMD)
--retrieve data through DECLARE CURSOR
SET VAR vCheckCursor1 INTEGER = (CHKCUR('c1'))
IF vCheckCursor1 = 1 THEN
 DROP CURSOR c1
ENDIF
SET VAR vCheckCursor2 INTEGER = (CHKCUR('c2'))
IF vCheckCursor2 = 1 THEN
 DROP CURSOR c2
ENDIF

-- retrieve all the data through the DECLARE CURSOR
-- command instead of SELECT
SET VAR vcustid INTEGER
DECLARE c1 CURSOR FOR SELECT custid, company, +

custaddress, custcity ,custstate, custzip, +
custphone FROM customer ORDER BY custid

DECLARE c2 CURSOR FOR SELECT contfname, contlname +
FROM contact WHERE custid = .vcustid

OPEN c1

-- Get the first row of customer data
FETCH c1 INTO vcustid INDI ind1, vcompany INDI ind2,+

vaddress INDI ind3, vcity INDI ind4, vstate INDI ind5, +
vzip INDI ind6, vphone INDI ind7

WHILE SQLCODE <> 100 THEN

-- Display the customer data and open cursor c2 to
-- retrieve the matching contact data
SET VAR vcsz = (.vcity + ',' & .vstate & .vzipcode)
WRITE .vcustid, .vcompany
WRITE .vaddress
WRITE .vcsz
OPEN c2
FETCH c2 INTO vfname INDI i1, vlname INDI i2
WHILE SQLCODE <> 100 THEN

SET VAR vfullname = (.vfname & .vlname)
WRITE .vfullname
FETCH c2 INTO vfname INDI i1, vlname INDI i2

ENDWHILE

-- Close cursor c2 and get the next row of

Oterro 11 Help Manual462

Copyright © 1982-2024 R:BASE Technologies, Inc.

-- customer data
CLOSE c2
FETCH c1 INTO vcustid INDI ind1, vcompany INDI ind2,+

vaddress INDI ind3, vcity INDI ind4, vstate INDI ind5, +
vzip INDI ind6, vphone INDI ind7

ENDWHILE
DROP CURSOR c1
DROP CURSOR c2

Another small change also improves performance - instead of using SET VAR commands within the
WHILE loops to concatenate city, state and zipcode together, and first and last name together, the
concatenation operation can be done in the DECLARE CURSOR command. The concatenation in the
DECLARE CURSOR reduces the number of commands that are repeated for each row and moves the
work to the DECLARE CURSOR command.

*(CUSTREP4.RMD add the concatenation to the DECLARE CURSOR)
SET VAR vCheckCursor1 INTEGER = (CHKCUR('c1'))
IF vCheckCursor1 = 1 THEN
 DROP CURSOR c1
ENDIF
SET VAR vCheckCursor2 INTEGER = (CHKCUR('c2'))
IF vCheckCursor2 = 1 THEN
 DROP CURSOR c2
ENDIF

SET VAR vcustid INTEGER

-- Replace SET VAR commands with expressions in
-- the DECLARE CURSOR
DECLARE c1 CURSOR FOR SELECT custid, company, +
custaddress, (custcity + ',' & custstate & custzip), +

custphone FROM customer ORDER BY custid
DECLARE c2 CURSOR FOR SELECT (contfname & contlname) +

FROM contact WHERE custid = .vcustid
OPEN c1

-- Retrieve and display the customer data
FETCH c1 INTO vcustid INDI ind1, vcompany INDI ind2, +

vaddress INDI ind3, vcsz INDI ind4, vphone INDI ind5
WHILE SQLCODE <> 100 THEN

WRITE .vcustid, .vcompany
WRITE .vaddress
WRITE .vcsz

-- Retrieve and display the contact data
OPEN c2
FETCH c2 INTO vfullname INDI i1
WHILE SQLCODE <> 100 THEN

WRITE .vfullname
FETCH c2 INTO vfullname INDI i1

ENDWHILE

-- Close cursor c2 and get the next row of
-- customer data
CLOSE c2
FETCH c1 INTO vcustid INDI ind1, vcompany INDI ind2, +

vaddress INDI ind3, vcsz INDI ind4, vphone INDI ind5
ENDWHILE

R:BASE Reference Topics 463

Copyright © 1982-2024 R:BASE Technologies, Inc.

DROP CURSOR c1
DROP CURSOR c2

The final change to improve performance is to use the RESET option on the OPEN c2 command instead of
CLOSE c2. Overall, we have improved performance on this small set of rows by a full second. On a
larger data set you can expect to see a greater performance improvement.

*(CUSTREP5.RMD)
--reset cursor 2 instead of close and open

SET VAR vCheckCursor1 INTEGER = (CHKCUR('c1'))
IF vCheckCursor1 = 1 THEN
 DROP CURSOR c1
ENDIF
SET VAR vCheckCursor2 INTEGER = (CHKCUR('c2'))
IF vCheckCursor2 = 1 THEN
 DROP CURSOR c2
ENDIF

SET VAR vcustid INTEGER
DECLARE c1 CURSOR FOR SELECT custid, company, +

custaddress, (custcity + ',' & custstate & custzip), +
custphone FROM customer ORDER BY custid

DECLARE c2 CURSOR FOR SELECT (contfname & contlname) +
FROM contact WHERE custid = .vcustid

OPEN c1
FETCH c1 INTO vcustid INDI ind1, vcompany INDI ind2, +

vaddress INDI ind3, vcsz INDI ind4, vphone INDI ind5
WHILE SQLCODE <> 100 THEN

WRITE .vcustid, .vcompany
WRITE .vaddress
WRITE .vcsz

-- Open cursor c2 with the RESET option,
-- no CLOSE command is needed
OPEN c2 RESET
FETCH c2 INTO vfullname INDI i1
WHILE SQLCODE <> 100 THEN

WRITE .vfullname
FETCH c2 INTO vfullname INDI i1

ENDWHILE
FETCH c1 INTO vcustid INDI ind1, vcompany INDI ind2, +

vaddress INDI ind3, vcsz INDI ind4, vphone INDI ind5
ENDWHILE
DROP CURSOR c1
DROP CURSOR c2

As you can see from the above examples, maximizing the work of the DECLARE CURSOR command
provides significant performance improvements. The changes were small and they didn't involve a lot of
time or programming effort, but these changes did result in definite performance benefits.

Customize the environment
In addition to optimizing your programming code, you can improve cursor performance by optimizing the
environment. Obviously, code runs faster on a newer computer. Outside of upgrading your hardware,
however, certain R:BASE environment settings can be used to improve performance. These settings
generally improve overall performance as well as cursor performance.

Look at the EXPLAIN.DAT output file generated by the MICRORIM_EXPLAIN variable to see the cursor
query optimization. The OPEN command actually executes the query. Each query executed in your
program puts an entry in EXPLAIN.DAT; for example, SELECT or UPDATE commands in the WHILE loop

Oterro 11 Help Manual464

Copyright © 1982-2024 R:BASE Technologies, Inc.

are reflected. You might also see a query reference to the SYS_RULES table, which is used for multi-user
locking control.

By using EXPLAIN.DAT, you can easily see why using the RESET option on OPEN is faster. Normally, each
OPEN redoes the query. When RESET is used, the query is only optimized once.

The EXPLAIN.DAT entries for the last two command files (CUSTREP4.RMD and CUSTREP5.RMD) from
Example 2 are shown here. The first entry shows nested cursors using the OPEN and CLOSE
commands. The second entry shows using the RESET option on OPEN.

Cursor c1 on the Customer table is accessed sequentially, all rows in the table are retrieved, and no
WHERE clause is used. If an indexed WHERE clause was used, EXPLAIN.DAT would show the index used.
The second cursor on the Contact table does use an indexed WHERE clause to define the query. This
query is redone each time the cursor is opened with a different vcustid value.

SortStrategy = DB_TAG (internal=1)

SelectCost=1. (OptimizationTime=0ms)
 Customer Sequential

SelectCost=2.904827e-002 (OptimizationTime=0ms)
 Contact (ColumnName=CustID,Type=F) Random Dup=1.296296 Adj=0.9714286

SelectCost=2.904827e-002 (OptimizationTime=0ms)
 Contact (ColumnName=CustID,Type=F) Random Dup=1.296296 Adj=0.9714286

SelectCost=2.904827e-002 (OptimizationTime=0ms)
 Contact (ColumnName=CustID,Type=F) Random Dup=1.296296 Adj=0.9714286
....

SelectCost=2.904827e-002 (OptimizationTime=0ms)
 Contact (ColumnName=CustID,Type=F) Random Dup=1.296296 Adj=0.9714286

SelectCost=2.904827e-002 (OptimizationTime=0ms)
 Contact (ColumnName=CustID,Type=F) Random Dup=1.296296 Adj=0.9714286

SelectCost=2.904827e-002 (OptimizationTime=0ms)
 Contact (ColumnName=CustID,Type=F) Random Dup=1.296296 Adj=0.9714286

SelectCost=1. (OptimizationTime=0ms)
 SYS_RULES Sequential

The following EXPLAIN.DAT entry uses OPEN c2 RESET. The same query is used each time cursor c2 is
accessed. The query does not need to be reoptimized each time the cursor is opened.

SortStrategy = DB_TAG (internal=1)

SelectCost=1. (OptimizationTime=0ms)
 Customer Sequential

SelectCost=2.904827e-002 (OptimizationTime=0ms)
 Contact (ColumnName=CustID,Type=F) Random Dup=1.296296 Adj=0.9714286

SelectCost=1. (OptimizationTime=0ms)
 SYS_RULES Sequential

For additional information on using the MICRORIM_EXPLAIN variable to see the cursor query
optimization, refer to the "Environment Optimization" chapter within the Reference Index of the R:BASE
Help.

R:BASE Reference Topics 465

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.5.7 Questions & Answers

Q. When should I use a cursor?
A. Use a cursor when it seems like the best way to get a task done. There are no rules or standards to
say when you should use a cursor and when you shouldn't. Often the logic behind a cursor is easier to
understand than the logic behind a complex SELECT or UPDATE command that works across a group of
rows. Many programmers have replaced DECLARE CURSOR routines with a single INSERT, UPDATE or
DELETE command, most often for performance reasons, but not all cursors can be replaced with a single
SQL command.

Deciding to use a cursor will depend on your level of programming expertise and understanding of the
task to be accomplished. First get the program to work; once it works, look at ways to make the program
run more efficiently and faster.

Q. How do I make a cursor faster?

A. Using a DECLARE CURSOR is slower than using just a single SQL command working across a group of
rows, but some tasks just can't be done without using a cursor. You can use certain techniques to
maximize the performance of DECLARE CURSOR routines. However, just like deciding when to use a
cursor, there are no rules or standards about improving the performance of a cursor.

One of the best ways to make a cursor faster is to move as much of the work as possible into the
DECLARE CURSOR command itself. Let the cursor select as many columns as possible. If you are doing
calculations for each row, see if you can use one of the SELECT functions with the GROUP BY option.

For additional suggestions to improve cursor performance, see the Optimizing Cursors chapter in this
document.

Q. Should I use WHERE CURRENT OF or an explicit WHERE clause?
A. In terms of performance, there is very little difference between the two options. Not all cursors can be
used with the WHERE CURRENT OF syntax. Getting the most out of your DECLARE CURSOR statement is
more important in terms of performance than making your cursor an updatable cursor.

Q. I'm trying to UPDATE data using WHERE CURRENT OF and I get a syntax error. I have
checked and double checked the syntax, and it is fine.
A. You get this error when you have a non-updatable cursor. A non-updatable cursor does not support
use of WHERE CURRENT OF. Use an explicit WHERE clause to update the table instead of WHERE
CURRENT OF.

Q. What is a non-updatable cursor?
A. A cursor knows what data to retrieve based on the SELECT statement that is part of the DECLARE
CURSOR command. Like a regular SELECT command, the SELECT that is part of the DECLARE CURSOR
can retrieve data from multiple tables or use a GROUP BY. It has all the features of the regular SELECT.
However, only a single table SELECT with no GROUP BY is updatable; this option is the only one that
guarantees the cursor is pointing to a single row in a table. If the cursor can't
point back to and identify a single row, it doesn't know what to update.

Q. Is it faster to retrieve data inside my WHILE loop using the SET VAR command or the
SELECT...INTO command?
A. It's just a little bit faster to retrieve additional data using a SET VAR command instead of the
SELECT...INTO command. The SELECT has more overhead. The fastest way to retrieve column data into
variables, however, is to retrieve whatever columns possible through the DECLARE CURSOR command.
That method can be almost twice as fast as using either SET VAR or SELECT...INTO.

Q. My WHILE loop never ends. It just keeps repeating the last row.
A. FETCH, which sets SQLCODE, should be the last command in the WHILE loop. When no more data is
available, SQLCODE is set to 100. If FETCH is the last command in the WHILE loop, the next command
executed is the WHILE statement, which tests the current value of SQLCODE. Other SQL commands
placed after the FETCH and before the ENDWHILE might reset SQLCODE to a value other than 100.

Also, if your WHILE condition is not SQLCODE <> 100, make sure you are checking the condition
correctly. If the WHILE loop doesn't exit, the WHILE condition is never false. Use TRACE and set up watch
variables to see what is happening with your variable values.

Q. Why won't WHENEVER work with DECLARE CURSOR?

Oterro 11 Help Manual466

Copyright © 1982-2024 R:BASE Technologies, Inc.

A. WHENEVER is an SQL error trap command that executes a GOTO whenever the data not found
situation (SQLCODE = 100) occurs. At first glance, WHENEVER seems ideal for use with a DECLARE
CURSOR. However, if your DECLARE CURSOR routine uses any other SQL commands that can return a
"data not found" error, such as SELECT, INSERT or UPDATE, the WHENEVER immediately exits the
DECLARE CURSOR WHILE loop even though all the data has not been processed. The R:BASE error "No
rows exist or satisfy the WHERE clause" is a "data not found" error and sets SQLCODE to 100.

Q. I use DECLARE CURSOR to find out if a row exists in a table. Is there a way to do this
check faster?
A. If you only want to see if a row exists in a table, don't use DECLARE CURSOR. The DECLARE CURSOR
command by itself doesn't check this. You need to OPEN the cursor and FETCH before you know if a row
has been found. Instead use the SELECT command; SELECT INTO a variable and test the variable value,
or test SQLCODE immediately after the SELECT command. If no row is found, SQLCODE is set to 100.
Using just the SELECT command is much faster than using the DECLARE CURSOR.

Q. My DECLARE CURSOR command is giving me a syntax error. Is there an easy way to check
the syntax?
A. First make sure the cursor name is in the correct place in the command. A common error is to use
DECLARE CURSOR c1 instead of DECLARE c1 CURSOR. The SELECT part of the DECLARE CURSOR
command can get quite complex, particularly when more than one table is involved. Test the SELECT
part of the DECLARE CURSOR command at the R> Prompt, which executes just like a regular SELECT
command. You can test and debug the SELECT part of your DECLARE CURSOR before putting it into the
DECLARE CURSOR structure.

8.6 Database Files

The Oterro database stores all information about a database in four files. Each file has the name of the
database followed by an extension number of .RX1, .RX2, .RX3, or .RX4

The four database files operate together but have the capability to exist in separate directories, or on
separate hard drives. They are not text files and cannot be modified directly by another program, text
editor, or word processor without damaging the database.

As an example, the Oterro sample bluzvan database has these files:

· BLUZVAN.RX1
File 1 contains the definition of the database structure.

· BLUZVAN.RX2
File 2 contains the data in the database.

· BLUZVAN.RX3
File 3 contains the indexes to the data stored in BLUZVAN.RX2.

· BLUZVAN.RX4
File 4 contains the data in the database from the binary and character large object data types.

The Oterro database coordinates the four database files, which can exist in separate directories, by
checking the timestamp recorded in each database file. When a database is created or opened, a
timestamp is encoded in each of the four database files, enabling the database files to be stored in
separate directories apart from one another. To ensure that the correct database files are accessed, the
Oterro database evaluates the timestamp values of the files as it searches for them on the path
statement. Oterro tries to connect to File 1 first (DBNAME.RX1), then it searches the path for the other
database files (DBNAME.RX2, DBNAME.RX3, and DBNAME.RX4).

Updating the encoded timestamp values in the four database files (DBNAME.RX1, DBNAME.RX2,
DBNAME.RX3, and DBNAME.RX4) so that they all have the same timestamp values might be necessary if
the Oterro Engine is halted or if your computer or operating system crashes. When you try to connect to
a database that is out of synchronization, the Oterro Engine returns an error message if the AUTOSYNC
setting is off. Otherwise, the Oterro Engine synchronizes the database automatically.

File 1 (.RX1) contains:

· Current size of File 2 (.RX2), File 3 (.RX3), and File 4 (.RX4)
· Current timestamp for matching with File 2 (.RX2), File 3(.RX3) , and File 4 (.RX4)
· Encrypted database owner's user identifier
· Number of tables, columns, and indexes in the database

R:BASE Reference Topics 467

Copyright © 1982-2024 R:BASE Technologies, Inc.

· Settings for all environment commands and special characters stored with the database, including
formats for DATE, DATETIME, TIME, and CURRENCY

· Table structure including table name, row width, number of columns and rows in the table, and
starting and ending rows for the table in File 2 (.RX2)

· Column structure including column name, data type, size, and pointer to the index in File 3 (.RX3)
· Index structure including index name, size, and table and column references

Data integrity depends on storing the types of information in the preceding list. Storing information about
column structure, for example, ensures that you cannot redefine a column that exists in more than one
table. Nor can you remove a column that is part of an expression for a computed column, preventing you
from inadvertently changing or removing information. You also cannot define two columns with the same
name and different data types or sizes.

The Oterro database updates File 1 every time you start an operation or enter a command that modifies
database structure or change the settings that are stored with the database. The update occurs as soon
as the Oterro database completes the command.

File 1 is also updated when the database is closed.

The Oterro database updates File 2 at the completion of every command that adds, modifies, or deletes
rows from a database. In multi-user mode, when a command adds, modifies, or deletes multiple rows,
the Oterro database updates the file after each row.

If SET CLEAR is set off, the Oterro database uses a 4K buffer as a workspace and writes information to
File 2 only when the buffer is full. The default setting for SET CLEAR is on, which means the buffer is
written to the file after every command.

8.7 Data Types

These data types can be specified within the R:BASE command syntax using the SET VARIABLE
command.

BIGINT
· Holds a 64-bit integer value
· Offers a range of ±999,999,999,999,999,999
· Delimiters (such as commas) cannot be used in entry
· No length is needed

BIGNUM
· Holds decimal numbers whose precision and scale can be set
· When specifying BIGNUM, specify a precision (the total number of digits) from 1 to 38 (default 18) and

a scale (the number of decimal places) from zero to any positive integer up to the precision value
(default 0)

· R:BASE reserves a minimum of forty bytes of internal storage
· BIGNUM numbers are stored as DECIMAL

BIT
· Holds binary data
· The default length is 1 bit
· The fixed length is 1 to 1,500 bytes

BIT VARYING
Maps to VARBIT

BITNOTE
· Holds binary data
· No length is needed
· The variable length is 0 to 4,088 bytes of binary data

BOOLEAN
· Hold true/false values
· Internally stored as 0 for false and 1 for true
· Accepted values for false include: 0, false, 'false'

Oterro 11 Help Manual468

Copyright © 1982-2024 R:BASE Technologies, Inc.

· Accepted values for true include: 1, true, 'true'

 Note: For multilingual applications, the values of 0 and 1 are recommended.

BSTR
· Holds binary string data
· String data type that is used by COM (Component Object Model), Automation, and Interop functions
· Used to support Unicode in table data
· Composite data type that consists of a length prefix, a data string, and a terminator

Length Prefix
· Consists of a four-byte integer
· Occurs immediately before the first character of the data string
· Contains the number of bytes in the following data string
· Does not include the terminator

Data String
· Consists of a string of Unicode characters (wide or double-byte characters)
· May contain multiple embedded null characters

Terminator
· Consists of two null characters (0x00)

CHAR VARYING
Maps to VARCHAR

CHARACTER
Maps to TEXT

CURRENCY
· Holds monetary values of up to 23 digits represented in the currency format, established using SET

CURRENCY
· Dollar amounts are in the range ±$99,999,999,999,999.99
· Commas or the current delimiter can be used. If no decimal point is included, .00 is assumed
· Data is stored as two long integer values, reserving four bytes of internal storage
· The negative currency format with parenthesis around the negative value e.g. ($500.00), is not

recognized

DATE
· Holds dates in a 1- to 30-character format based on month, day, and year as established using SET

DATE
· The minimum and default format to display month, day, and year is MM/DD/YY
· The allowable date range is January 1, 3999 BC to December 31, 9999 AD
· R:BASE reserves four bytes of internal storage

DATETIME
· A concatenation of the DATE and TIME data types, resulting in a sequence and display format as set by

DATE and TIME
· DATETIME cannot be SET directly, but does permit extraction of its value by the DATETIME functions

into a DATETIME variable
· For example: SET VAR vdatetime = (DATETIME(06/12/93, 12:15:30.123)), results in vdatetime =

'06/12/93', 12:15:30.123'
· For identification purposes, DATETIME values are automatically stamped into R:BASE databases, also

known as the timestamp
· DATETIME occupies 8 bytes of internal storage
· The time portion of the value does not have to be specified in a DATETIME data type. If omitted, it

defaults to 0:0:0

DECIMAL
Maps to NUMERIC

DOUBLE
· Holds double-precision real numbers in the range ±1.7E308 with a precision of up to 15 digits
· DOUBLE numbers longer than 15 digits are stored as scientific notation
· R:BASE reserves eight bytes of internal storage

R:BASE Reference Topics 469

Copyright © 1982-2024 R:BASE Technologies, Inc.

· Because DOUBLE numbers are stored in a binary form, the displayed value may not be the stored
value

· Calculations are performed on the stored values
· Among numeric data types, DOUBLE provides the greatest range of values

GUID
· Binary global unique identifier to store unique values, which is represented as a 32-character

hexadecimal string
· As the GUID data type is a binary value, it will increase retrieval of data from tables for indexed

columns

An example of a GUID value is: 8C20005C-0E2A-47E0-B2BE-57E67961628B

INTEGER
· Holds whole numbers in the range of ±1,999,999,999
· Delimiters (such as commas) cannot be used in entry
· R:BASE reserves four bytes of internal storage space

LONG VARBINARY
Maps to VARBIT

LONG VARBIT
Maps to VARBIT

LONG VARCHAR
Maps to VARCHAR

NOTE
· Holds alphanumeric data
· The default length is 0, where the length is determined by the data
· Holds variable length text of up to 4,092 characters
· Maximum length of a NOTE column can be set
· Indexes and constraints are allowed on NOTE data types
· R:BASE reserves a minimum of four bytes of internal storage space

NUMERIC
· Holds decimal numbers whose precision and scale can be set
· When specifying NUMERIC, specify a precision (the total number of digits) from 1 to 15 (default 9) and

a scale (the number of decimal places) from zero to any positive integer up to the precision value
(default 0)

· R:BASE reserves a minimum of eight bytes of internal storage
· NUMERIC numbers are stored as DOUBLE

REAL
· Holds real number amounts in the range of ±1E38 with six-digit accuracy
· Real numbers with up to seven digits are displayed as decimal numbers; for example, 321.414
· Real numbers with more than seven digits are represented in scientific notation; for example, 9.8E32
· R:BASE reserves four bytes of internal storage space
· REAL numbers are stored in a binary form; therefore, the displayed value may not be the actual stored

value
· Calculations are performed on the stored values

SMALLINT
· Holds a 16-bit integer value
· Offers a range of ±32767
· Delimiters (such as commas) cannot be used in entry
· No length is needed

TEXT
· Holds alphanumeric data
· The default length is eight characters
· The maximum is 1,500 characters
· Maximum length of a TEXT column can be set
· R:BASE reserves a minimum of four bytes of internal storage space

Oterro 11 Help Manual470

Copyright © 1982-2024 R:BASE Technologies, Inc.

TIME
· Holds time values in a 1- to 20-character format based on hours, minutes, and seconds, established

using SET TIME
· The minimum format to display hours, minutes, and seconds is HH:MM:SS
· TIME can be specified up to thousandths of a second
· Time can be displayed or entered as a 12- or 24-hour clock
· R:BASE reserves four bytes of internal storage

VARBINARY
Maps to VARBIT

VARBIT
· Holds binary data
· No length is needed
· Is ideal for storing external files, like images, PDF files, etc.

VARCHAR
· Holds alphanumeric data
· No length is needed
· Is ideal for storing large text data

WIDENOTE
· Holds Unicode data
· The default length is 0, where the length is determined by the data
· Holds variable length text of up to 4,092 characters
· Maximum length of a WIDENOTE column can be set
· Indexes and constraints are allowed on WIDENOTE data types
· R:BASE reserves a minimum of four bytes of internal storage space, with 2 bytes per character

WIDETEXT
· Holds Unicode data
· The default length is eight characters
· The maximum is 1,500 characters
· Maximum length of a WIDETEXT column can be set
· R:BASE reserves a minimum of four bytes of internal storage space, with 2 bytes per character

8.8 Indexes

An index provides a pointer to the location of a column value in each row of a table, which allows R:BASE
to search for rows of data much faster than searching rows sequentially. In general, R:BASE processes
an operation that contains an indexed column faster than it processes one without.

The R:BASE index is similar to an index in a book; both indexes allow you to find information faster.
Instead of searching through a book page by page, you can look up the topic in the index and find the
exact page number of the topic. Similarly, you can apply indexes to columns so that R:BASE finds data
faster.

When you apply an index to a column, R:BASE records the location of every value in that column. Then,
when you look for or sort information in the column, R:BASE uses the index to find the rows you need
quickly. For example, you want to list the bonuses that employee 102 earned; if the empid column in the
salesbonus table is indexed, R:BASE finds and searches that column faster. Indexes are most useful
when you have tables with many rows.

This means that by indexing the appropriate columns, you can speed up your applications. Processes that
formerly took 20 minutes or more may be completed in only a few seconds. An index on an R:BASE
column speeds up access to a row of data in much the same way that an index in a book speeds up
access to a page.

To understand how indexes increase processing speed, it's helpful to know how R:BASE stores a
database. An R:BASE database consists of four files; each file has a different file extension - RX1, RX2,
RX3, and RX4 for R:BASE 11. File 1 contains the definition of the database structure; file 2 contains the
data in the database; file 3 contains the indexes to the data stored in file 2, and file 4 contains the large
binary object data (LOB). LOBs include graphic files or large text data. R:BASE also stores forms,
reports, and labels as LOBs in File 4.

R:BASE Reference Topics 471

Copyright © 1982-2024 R:BASE Technologies, Inc.

When you include an indexed column in a WHERE clause, R:BASE uses the index in file 3 to find the
location of each row in the table in file 2. Without an indexed column, R:BASE must sequentially search
each row in that table in file 2 to find the data. By sorting an index list, you give R:BASE nearly
instantaneous access to the specific index reference to a column name.

An indexed column improves the performance of the following commands, clauses, or operations:

· CREATE VIEW
· DELETE DUPLICATES
· PROJECT
· RULES
· SELECT (when it includes a WHERE clause)
· WHERE...

8.8.1 Choosing the Columns to Index

It's a very good idea to put an index on key columns and on linking columns. A key column is a column
that uniquely identifies rows. A linking, or common column, is a column that exists in two or more tables
in order to establish a relationship between the tables. In effect, by choosing to link the common columns
between two tables by adding a primary key and foreign key relationship, the columns are automatically
indexed. You can also add a Unique key to a column, which is also automatically indexed. Primary keys,
foreign keys, and unique keys are all types of constraints, which specifically control the data that enters
your database by applying powerful data-integrity rules. By applying a constraint to a column, you can
prevent irreconcilable and empty data from being entered add at the same time add an index.

Aside from constraints, an index can be added to a column for faster data retrieval in cases where the
columns are not used in a primary key/foreign key relationship, and the column is likely to be used as
part of a WHERE Clause whose values are at least moderately unique. In some cases, an index can be
applied to columns that have RULES applied to them, which allows R:BASE to check the RULE faster. An
index can also be added to the linking columns in views. An indexed column can contain null values, but
R:BASE uses an index most efficiently if each row in the indexed column contains a value.

You can apply the following types of indexes:

· Unique index - Ensures that the values entered in the indexed column are unique

· Full or partial text index - For columns with NOTE or TEXT data types. R:BASE preserves each
character in the indexed column (a full text index). Or, you can specify the number of characters to
preserve, and R:BASE hashes (converts characters to a 4-byte integer) the remaining characters (a
partial index).

To keep the index file from becoming too large, use a partial index--specify enough characters to
guarantee the values are unique. If the preserved values are not unique, R:BASE must unhash the
values before it can identify the rows, which slows performance. If you do not specify the number of
characters to preserve, R:BASE preserves all of them, unless there are more than 200 characters
defined; then, R:BASE preserves the first 32 and hashes the rest.

· Multi-column index - A combination of up to 8 columns in one index. For example, if you
consistently search three columns when working with a certain database, you can define a separate
index for each column. Or, you can define one index for all three columns. R:BASE searches a multi-
column index faster than three separate indexes. In a situation where you need to use more than
one column to uniquely identify a row, try combining them into a computed column and then
indexing the computed column.

Primary, unique, and foreign key columns are indexed automatically. In addition, the following types of
columns are good for indexing:

· Columns that are neither primary nor foreign keys, but are frequently referred to in queries and
sorts.

· Columns that have rules applied to them--in most cases, R:BASE can use indexing to check rules
faster.

Oterro 11 Help Manual472

Copyright © 1982-2024 R:BASE Technologies, Inc.

· Linking columns in views.

Although indexes speed up searches, they may slow down data entry for 2 reasons:

· they occupy space on the disk in the number 3 database file
· it takes time to build the index for each value as it is entered

Therefore, try to limit the use of indexes.

8.8.2 Assigning and Removing an Index

You can add an index to or remove an index from a column at any time by using either the Data
Designer (RBDefine) or the CREATE INDEX or DROP INDEX commands. When you use the database-
building menus to define a table, you can index columns as you define them. When you define a table
using CREATE TABLE, you must add the index after you define the table.

Valid names must start with a letter, and can include the following characters:

· Letters (A-Z)
· Numbers (0-9)

· # (pound sign)

· _ (underscore)

· $ (dollar sign)

· % (percent sign)

To speed up some operations, remove the indexes from the columns before the operation and then
rebuild the indexes after the operation finishes. For example, you can load a large number of rows into a
table without RULES by using the LOAD and INSERT commands or by using GATEWAY to import data.
First, you remove the indexes from the columns in the table, then load the records, and finally rebuild the
indexes. This method speeds up processing because all of the data writes to file 2 occur at the same
time, followed by all of the index writes to file 3.

When dropping and creating indexes constantly, it is recommended that you maintain the index file and
perform a PACK on the indexes. Use the PACK KEYS in single-user mode with MULTI set to OFF, or PACK
INDEX in a multi-user mode with MULTI set to ON.

8.8.3 Optimizing Indexes

You can create optimal indexes by paying attention to the data type of the indexed column and by
minimizing the number of duplicate values in the column. The more frequently a particular value occurs,
the less efficient that column becomes as an indexed column.

The fastest, most efficient data types for indexed access are INTEGER, REAL, DATE, TIME, and TEXT with
a defined length of four characters or less.

You may find that indexing a table with 1500 or fewer rows actually increases the total time to search for
rows of data, since the task also includes the time it takes to build the index.

8.8.4 Indexing Long TEXT Values

Because the defined length of TEXT values is often more than four characters, R:BASE must hash
(convert) the TEXT values containing more than four characters to create a four-byte index called a hash
value. Even though a TEXT column may contain unique text values, it may generate duplicate hash
values.

How R:BASE Hashes TEXT Data

R:BASE attempts to create unique hash values by performing the following operations:

· Fills the first and second bytes of the four-byte hash value with the binary equivalents of the first
and second characters in the TEXT string.

R:BASE Reference Topics 473

Copyright © 1982-2024 R:BASE Technologies, Inc.

· Sums the binary values of all the odd-numbered characters in the TEXT string beginning with the
third. Then it divides the sum by 256 and uses the remainder to fill the third byte of the hash value.

· Sums the binary values of all the even-numbered characters in the TEXT string beginning with the
fourth. Then it divides the sum by 256 and uses the remainder to fill the fourth byte of the hash
value.

If two hash values created by hashing two different TEXT strings are identical, R:BASE builds a multiple
occurrence table in file 3 to store the duplicate hash values.

This is why TEXT strings that share only their beginning two characters (often the case with part numbers
and with form, report, and label names) may have the same hash value, thereby reducing the
effectiveness of the index. If you can ensure that the first two characters of each TEXT column value are
unique, you can improve the performance of an index on that TEXT column, because you'll eliminate all
of the multiple occurrence tables.

Another way to make hash values unique is to define indexed TEXT columns with as few characters as
possible while remembering to make the column values unique, especially with regard to the first two
characters.

IHASH to the Rescue

If the first two characters of TEXT values are identical, which is often true with part numbers, such as AB-
100, AB-101, AB-102, and so on, try using the IHASH function and a computed column to reduce the
likelihood of duplicates. It's important to understand that IHASH doesn't guarantee a unique hash value.
IHASH may actually hash two different TEXT values to the same hash value (index). What IHASH does is
to create more non-duplicate values, though it doesn't guarantee that all values will be unique.

How to Use IHASH

IHASH is a conversion function, not a command. Its syntax is simple:

(IHASH(arg,n))

Arg can be a TEXT column, a dotted variable, or a value. The width, n, tells R:BASE how many
characters, starting with the first, are needed to establish a unique string. If n is zero, R:BASE uses the
entire length of the string.

The first consideration in using IHASH is to decide whether to use it at all. For example, IHASH may not
improve performance when used on a TEXT column that holds unique text names of four characters or
less. But it will improve performance on a TEXT column that has many values with identical first and
second characters. It all depends on whether IHASH can reduce the number of identical values in the
index.

IHASH Step by Step

Here's an example that uses IHASH to speed up indexed access and joins by increasing the speed of a
key, indexed TEXT column named partid. Follow these steps:

1. Define an INTEGER computed column, including the IHASH function:

ALTER TABLE tblname ADD hashid = (IHASH(partid,0)) INTEGER

If partid exists in other tables, you may want to add hashid to them too. For example, if partid links
a parts table with an invoice table, use these commands to add hashid:

ALTER TABLE parts ADD hashid = (IHASH(partid,0)) INTEGER
ALTER TABLE invoice ADD hashid

2. Drop the index from partid and index the computed column hashid:

DROP INDEX partid IN tblname
CREATE INDEX ON tblname hashid

Oterro 11 Help Manual474

Copyright © 1982-2024 R:BASE Technologies, Inc.

Index hashid in all the tables where it appears.

3. Use the newly indexed computed column in WHERE clauses and multi-table SELECT commands, but
be sure to continue to include the actual TEXT column also. For example, use it to find a specific part
number instead of using this WHERE clause:

command ... WHERE partid = .vpartid

Use this SET VAR and WHERE clause:

SET VAR vhash = (IHASH(.vpartid,0))
command ... WHERE (hashid = .vhash AND partid = .vpartid)

You must use the dotted variable (.vhash) instead of directly using the expression in the WHERE
clause, because R:BASE doesn't use an index if the WHERE clause uses an expression.

You must include AND partid = . vpartid to ensure that you get the right value. Remember, there's
no guarantee that the IHASH value will be unique.

If you use the computed IHASH column (hashid) in a multi-table join, you must also remember to
include both conditions in the WHERE clause. For example, the following rule checks for a unique
value:

RULES 'Value must be unique.' +
FOR tblname SUCCEEDS +
WHERE partid IS NOT NULL +
AND NOT EXISTS +
(SELECT partid FROM tblname t2 +
WHERE t2.hashid = tblname.hashid +
AND t2.partid = tblname.partid)

Correlated sub-SELECTs force R:BASE to do an internal join using indexes.

Here's another example of a multi-table join using hashid:

SELECT t1.partid, SUM(t2.price) +
FROM parts t1, invoices t2 +
WHERE t2.hashid = t1.hashid +
AND t2.partid = t1.partid +
GROUP BY t1.partid

Speeding Up IHASH

When you use IHASH, try not to use zero as the width (n). Zero causes R:BASE to use the entire string.
For example, if you're sure that the first 10 characters in a TEXT 50 column are enough to establish it as
unique, use 10 rather than zero with IHASH.

8.8.5 Using WHERE Clauses with Indexes

A WHERE clause can be in a command, a rule, or a lookup expression. If a WHERE clause has only one
condition, and if the conditional operator following the indexed column is =, BETWEEN, or IS NULL,
R:BASE uses the index on the column.

The BETWEEN operator doesn't use the index on a data type that must be hashed. So if the operator is
BETWEEN, the data type of the indexed column must be DATE, TIME, INTEGER, REAL, or TEXT with a
defined length of 4 or less.

R:BASE Reference Topics 475

Copyright © 1982-2024 R:BASE Technologies, Inc.

R:BASE doesn't use the index if the WHERE clause contains a wildcard character or an expression. To
make R:BASE use the index, replace expressions with constants or dotted variables and get rid of the
wildcards.

When a WHERE clause contains more than one condition and all conditions are combined with AND, the
clause must have at least one indexed column that uses =, BETWEEN, or IS NULL if you want R:BASE to
use indexes. Under these conditions, R:BASE chooses the condition that places the greatest restriction on
the WHERE clause for the indexed search. R:BASE uses the first of two conditions when both are at the
same level of restriction. Here are the three levels of restriction:

· = is most restrictive
· IS NULL is less restrictive
· BETWEEN is least restrictive
(R:BASE does not use indexes on BETWEEN when the command allows data modifications.)

8.8.6 Using ORDER BY with Indexes

You can significantly reduce the time R:BASE takes to process an ORDER BY clause when the column or
columns listed in the ORDER BY clause are included in an index with the same column sort order as that
specified in the ORDER BY clause.

An example would be if you are processing data by the invoice date and listing the results descending
order, so the most current invoices appear first, you would have an index on the table's invoice date
column that was created to process the data in the descending order as well.

8.8.7 Using Index-Only Retrieval

If it can, R:BASE will do an index-only retrieval. This is the fastest method of retrieving data. When the
columns selected for display are limited to the column or columns in the index used in the WHERE clause,
R:BASE will retrieve the data as it reads the index information from file 3. It does not need to look at the
data stored in file 2. Index-only retrieval is done only when the columns to be retrieved are all included
in the index. If the table is small, however, index-only retrieval may not be faster. As a rule of thumb,
R:BASE will choose index-only retrieval if the length of the index columns is less than 50% ofthe row
length (in bytes). If the table is small (not many columns), other retrieval methods are usually faster
than index-only.

The SELECT COUNT(*) command uses index-only retrieval if there is an indexed column in the table.
Instead, use a SELECT COUNT(colname) command, where the column specified in the command is not
an indexed column, and the column has a value for every row. If the column is indexed, R:BASE will use
index-only retrieval. If the column contains nulls, those rows are not counted. Do not use this command
to check for broken pointers or to compare performance with other commands.

8.8.8 Indexing Computed Columns

Adding indexes can speed up your applications in several ways. One method that allows very quick data
retrieval involves creating a computed column of unique values based on one or more columns.

For example, here is part of a program that helps in the scheduling of flight simulators for pilot training. A
simulator code (scode) in combination with a date (sdate) uniquely identifies each row in the table. To
make WHERE clauses fast, the following indexed computed INTEGER column (sindex) contains this
expression:

sindex = (JDATE(sdate) + (scode * 100000)) INTEGER

The application prompts for a simulator code and date, which it puts in two variables: vscode (INTEGER)
and vsdate (DATE). Then to quickly find the row, the application uses the following code (replace
"command" with any command that uses a WHERE clause):

SET VAR vsindex = (JDATE(.vsdate) + (.vscode * 100000))
command ... WHERE sindex = .vsindex

The above code proved twice as fast as this slower alternative:

Oterro 11 Help Manual476

Copyright © 1982-2024 R:BASE Technologies, Inc.

command ... WHERE scode = .vscode AND sdate = .vsdate

The more rows you have, the greater the efficiency.

8.8.9 Index Efficiency

To assist in determining the efficiency of indexes, check the Duplicate Factor and Adjacency Factor
values within the Data Designer.

For Duplicate Factor, this is the average number of times each value appears in the column. The number
1 means that values are never duplicated, or unique. The "higher" the number, the less efficient the
index.

For Adjacency Factor, this number is the estimate of the probability that two rows with similar index
values will be physically located together in the #2 data file. A "higher" number means more efficient
retrieval when reading rows in index order.

Duplicate Factor is the computed duplicate factor, used by R:BASE during retrieval to guess the fastest
way to find the result set. This number is the average number of times each value appears in the
column. A number of 1.0 means that values are never duplicated, or always unique. Zero means that the
value is unknown. The higher the number, the less efficient the index.

Adjacency Factor is the computed adjacency factor, used by R:BASE during retrieval to guess the fastest
way to find the result set. It is the estimate of the probability that two rows with similar index values will
be physically located together in the .RB2 file. A higher number means more efficient retrieval when
reading rows in index order. Zero means that the value is unknown.

The values within these two columns are computed when indexes are rebuilt or reloaded, for example,
during a PACK or RELOAD.

It is recommended that you reconsider the use of indexes with a high Duplicate Factor value. But, there
is not an exact Duplicate Factor benchmark for which to warrant its value "too high". It's value is
calculated based upon the number of duplicate values that are within the column, which would be directly
related to how many rows are in the table.

A Duplicate Factor with a value of 500 within a table containing 750 rows would be an example of a
poorly implemented index. On the other hand, a Duplicate Factor of 500 within a table containing 785,000
rows would be considered productive. The Duplicate Factor value is used by R:BASE to guess the fastest
way to find your results. The recommendation to reconsider the use of indexes with a high Duplicate
Factor value is just that; a recommendation. It is up to the developer to decide if they are truly taking
advantage of the index, or hurting their system's performance.

R:BASE Reference Topics 477

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.8.10 Smart Indexing

The single most important factor in determining the effectiveness of an index is the uniqueness of index
values. A unique index value is found faster than a value with multiple index occurrences. You can have
multiple occurrences of index values if you have more than one row with the same data value in a
column, or if you have a computed column (such as IHASH) whose values share the same result, or if
the index is hashed.

Note that we are talking about unique index values, not data values. An index value may or may not be
the same as a data value. Long text columns that are hashed when indexed have a higher probability of
unique data values creating non-unique index values. An index loses its effectiveness as duplicate values
increase and R:BASE must make more reads and comparisons.

Indexed columns also affect performance when adding or changing data in a table. Indexed columns
must be updated when a row is added or when the index column value is changed. The number of
indexed columns in a table affects the speed with which rows are added or changed in the table. Take
this into account when defining indexes and constraints. It is faster to load and change data on a table
with one indexed column than on a table with seven indexed columns.

8.8.11 Summary

Using indexes effectively requires understanding how they work. This means deciding which columns to
index, which data types to use, and whether to use IHASH. You also need to know how to improve
performance when using a text index.

When adding an index to a column, consider the following criteria:

· Columns that are neither primary nor foreign keys, but are frequently referred to in queries and
sorts

· Columns that have rules applied to them
· Linking columns in views
· The index is more efficient if each row contains a value
· The index is more efficient based on the uniqueness of the data

When properly implemented, indexes can greatly improve the data retrieval performance of your
applications!

8.9 Information Management with R:BASE

R:BASE is a relational database product that lets you design sets of tables to store and retrieve your data
easily. Each table contains information arranged in columns and rows about a single object or event,
such as a customer list or a list of sales transactions. A column is a specific fact, such as a customer's
name, about the object or event; a row is a cross-section of columns that is unique for a particular
instance in the table.

An R:BASE database is a collection of tables. For each column in a table, you specify a data type that
tells R:BASE what kind of data the column will hold - such as dates, currency, or text. You can also have
columns that hold a value computed from other columns. For example, if you have sales stored in one
column and a tax rate in another, a computed column can hold the tax on each sale (sales * tax rate).

The power of R:BASE lies in the control it gives you over the tables you create. You can manipulate the
data from one or any combination of the tables in your database, and you can organize tables so that
you rarely need to enter a particular piece of information more than once.

With R:BASE you can combine information from the tables in a database to provide answers for your
questions and create another permanent table that stores the combined information. You can also create
views, which are temporary tables that display all or part of the current contents of one or more tables. A
view does not require you to store the data in more than one table -it always shows you the most up-to-
date information, and it can combine data from several tables. A view is like a television screen that is
split to show two camera angles at once.

Oterro 11 Help Manual478

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.10 International Characters

The R:BASE configuration file contains tables that define how R:BASE processes and prints characters. If
you want to change how R:BASE evaluates characters, you can modify the information in these tables,
which are described below.

R:BASE saves table configurations with the database. If you make modifications to these tables in the
configuration file, use the PACK command with the WITH USER CASE option to compress the database
and apply the new configuration.

The Case Folding Table

The Case Folding table establishes the correspondences between uppercase and lowercase characters,
such as "A" and "a." R:BASE uses this table when testing characters for equality when the CASE setting is
off.

Each line in this table starts with "CASEP" and is followed by two ASCII character codes corresponding to
the uppercase and lowercase characters. For example, the following line shows that "a" (ASCII code 97)
corresponds to "A" (ASCII code 65):

 CASEP 97 65

The Collating Table

The Collating table equates two characters in sorting and inequality testing (>, >=, <, and <=).

Each line in this table begins with "COLLATE" and is followed by two ASCII character codes, whose
corresponding characters are considered equal in a sorting sequence. For example, the following lines
indicate that "a" (ASCII code 97), "ä" (ASCII code 228), and "A" (ASCII code 65) are all equal in a
sorting order:

 COLLATE 97 65

 COLLATE 228 65

The Printer Table (DOS Only)

The Printer table tells the printer how to print certain characters. Some printers cannot print certain
international characters, such as characters with accents or umlauts, so the printer must combine two or
more characters to create the international character.

Each line in this table begins with "FOLD" and is followed by a character and its ASCII code, then one or
more ASCII codes whose corresponding characters must be combined to create the first character. For
example, the following line tells the printer how to print "à" (ASCII code 133); print "a" (ASCII code 97),
backspace (BS), then print an accent "`" (ASCII code 96):

 FOLD à 133 97 BS 96

If your printer can print a character without combining other characters, do not delete the line. Instead,
edit the line. After "FOLD," enter the character, the character's ASCII code two times, then "00 00." For
example, if your printer can print "à," edit the line as follows:

 FOLD à 133 133 00 00

The Expansion Character Table

The Expansion Character table equates one character to two other characters. For example, you can
equate "ß" to "SS." This table is used in tables, columns, variables, WHERE clauses, ORDER BY clauses,
IF and WHILE commands, and indexed and non-indexed columns.

R:BASE Reference Topics 479

Copyright © 1982-2024 R:BASE Technologies, Inc.

Each line in this table begins with "EXPAND" followed by three ASCII character codes. You can have up to
seven lines in this table. For example, the following line equates "ö" (ASCII code 246) to "oe" (ASCII
codes 111 and 101):

 EXPAND 246 111 101

The Character Folding Table

The Character Folding table equates uppercase characters to lowercase characters. This table is used in
string-manipulation functions.

Each line in this table begins with "LCFOLD" and is followed by two ASCII character codes. For example,
the following line equates "A" (ASCII code 65) to "a" (ASCII code 97):

 LCFOLD 65 97

The Case-Sensitive Collating Table

The Case-Sensitive Collating table lists characters and their position in the sequence order of all
characters. This table is used when the CASE setting is on and when building indexes for columns with
the TEXT data type.

Each line in this table begins with "COLLATEC" and is followed by an ASCII character code and its
sequence position. For example, the following line indicates that "B" (ASCII code 66) is in the 76th
position in the sequence order:

 COLLATEC 66 76

If a character is not in this list, its sequence position number is the same as its ASCII character code.

8.11 Multi-User Considerations

R:BASE is a multi-user system that can be used on a single-user computer. In a multi-user environment,
you must ensure that the databases to be shared are located properly, that R:BASE is prepared to
protect your data, and that all workstations are properly configured to share databases.

In addition to the security systems that most networks provide, the R:BASE command GRANT, with which
access rights are assigned, provides additional security for R:BASE databases.

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.1 Introduction to Using R:BASE on a Network

R:BASE in a multi-user environment allows multiple users to simultaneously access, view, update, insert,
and delete data. To ensure data integrity, R:BASE uses various types of locks and a waiting period. To
most efficiently use R:BASE on a network, avoid situations that cause R:BASE to work more at
preventing user conflicts than at storing, sorting, and retrieving data. To a large degree, the speed of a
network and the network card in your computer dictates how fast R:BASE can perform. The faster the
network and network card, the better the R:BASE performance.

Oterro 11 Help Manual480

Copyright © 1982-2024 R:BASE Technologies, Inc.

Although the techniques for making R:BASE perform most efficiently depend on your particular database
and network, follow these guidelines to limit resource locking and improve response time:

· Schedule data entry among users at different times of the day, or have users enter data into
temporary tables that are inserted into a master table at the end of the day.

· When designing a database, take advantage of the relational capabilities in R:BASE for linking and
manipulating data stored in several tables. When possible, store data in several small tables rather
than in one large one.

· Design applications so that each user requires the fewest shared resources to do his or her work.
· Avoid using commands that lock a database when other users need access to it. For example,

avoid commands that change the structure of the database. You can run updates and backups at
night, when an entire database is available without conflicts.

Multi-User Mode Topics:

Setting Up for Network Use
Concurrency Control
Sharing Network Resources
Setting the Multi-User Default
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.2 Other Multi-User Considerations

Only a limited number of users can access certain parts of R:BASE at the same time. Be sure that all
network users are aware of the limitations and plan ahead to avoid conflicts in accessing database and
application files. A user should operate in single-user mode when performing any operation that modifies
the structure of the database or using the PACK command.

The limitations to access for users are listed in the following table:

R:BASE
Commands

Operating System
Files Used

Access Limitations

CODELOCK From ASCII to
converted binary file

One user at a time can convert a given
ASCII file

FORMS Database files One user at a time can modify a form in a
given database.

REPORTS Database files One user at a time can modify a report in a
given database.

GATEWAY Database files Data files for transfer to database, database
files. One user at a time can use data files.

RBDEFINE Database files One user at a time can create or change
database structure.

RBEDIT ASCII file One user at a time can create or edit a file.

LAUNCH External programs All users can share the program, within the
limitations of the external program.

ZIP External programs All users can share the program, within the
limitations of the external program.

Locks Topics:

Using the SET ROWLOCKS Command to Lock Rows
Using the SET VERIFY Command to Verify Data Entry
Using SET LOCK to Set Exclusive Table Locks
Displaying Multi-User Locks
Clearing Buffers with the SET CLEAR Command
Other Multi-User Considerations

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use

R:BASE Reference Topics 481

Copyright © 1982-2024 R:BASE Technologies, Inc.

Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

How to...

Operate in single-user mode

8.11.3 Clearing Buffers with the SET CLEAR Command

Setting CLEAR off gives you the option of waiting for R:BASE to fill the memory buffer allocated for
updates before writing data to the disk. However, in multi-user mode, R:BASE disables the command and
immediately updates the disk to prevent multi-user conflicts. If you have the SET CLEAR OFF command
in a program file, you might want to remove it to prevent the display of an error message, though the
presence of the command does not affect the running of the program.

Locks Topics:

Using the SET ROWLOCKS Command to Lock Rows
Using the SET VERIFY Command to Verify Data Entry
Using SET LOCK to Set Exclusive Table Locks
Displaying Multi-User Locks
Other Multi-User Considerations

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.4 Managing Scratch Files ($$$)

Did you know that you can automate the default directory for the R:BASE/OTERRO scratch files without
knowing the user's rights to their temporary directory?

SET SCRATCH sets the drive and directory location for temporary files created when sorting data.

SET SCRATCH ON - stores temporary files on the database drive and directory

SET SCRATCH OFF - stores temporary files on the current drive and directory

SET SCRATCH <path> - provides the path to the location where temporary files are stored

SET SCRATCH TMP - stores temporary files on the user's local temporary file directory by reading

the user's TMP operating system environment setting

Using the latest builds of R:BASE/OTERRO, you need to either update the line for "SCRATCH TMP" to
automatically define the windows temporary environment or use "SCRATCH C:\TEMP", for example, in
R:BASE/OTERRO configuration files. If you define the "SCRATCH C:\TEMP", make sure that you actually
have the C:\TEMP directory. We suggest that you keep all configuration (*.CFG) file in Windows or WinNT
directory.

This option is also helpful when you establish a universal naming convention (UNC) network connection
for an R:BASE database as a System DSN defined with UNC, such as "\
\FileServerName\SharedDirectoryName\dbname.rx1". This type of environment requires you to sure that
you have also set the path for R:BASE and OTERRO temporary SCRATCH files.

Edit the configuration file to read SCRATCH settings as follows:

Oterro 11 Help Manual482

Copyright © 1982-2024 R:BASE Technologies, Inc.

SCRATCH TMP

This will help eliminate all issues related to the access rights, disk space and so on, when running
R:BASE/OTERRO on enterprise servers and when accessing R:BASE database defined as a System DSN
using the UNC option.

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.5 Displaying Multi-User Locks

When R:BASE is used on a network, the LIST command displays the names of any locked tables by
highlighting the table name.

The LIST TABLE tblname command tells you whether the lock is an edit, cursor, row, local, or remote
lock, as shown in the following table:

Lock Description

Row lock Another workstation is using EDIT ALL or
a form that accesses this table or other
commands that use row locks

Local lock The SET LOCK command was issued
from this workstation

Remote lock A table lock has been applied with a
command issued at another workstation

Cursor lock A cursor is open on the table

Locks Topics:

Using the SET ROWLOCKS Command to Lock Rows
Using the SET VERIFY Command to Verify Data Entry
Using SET LOCK to Set Exclusive Table Locks
Clearing Buffers with the SET CLEAR Command
Other Multi-User Considerations

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.6 Using SET LOCK to Set Exclusive Table Locks

The SET LOCK command sets locks on tables. SET Lock should be set on when a user wants to be certain
that no other user will alter data in the tables being updated during a procedure. This command is useful
in conjunction with the DECLARE CURSOR command. If R:BASE cannot lock all tables listed in the
command, it does not lock any of the tables listed in the command.

R:BASE Reference Topics 483

Copyright © 1982-2024 R:BASE Technologies, Inc.

Exclusive table locks are cumulative--that is, for each SET LOCK tblname on command you issue, you
must issue a corresponding SET LOCK tblname off command to remove the lock from that table. Also,
the user who locked the table must issue the SET LOCK tblname off command.

The SET LOCK command is typically used in an application program to set locks, allow a procedure to be
performed, then remove locks.

Automatic locking is in effect even if the SET LOCK command is issued. Setting locks off affects only
locks set by the SET LOCK tblname ON command--not locks that R:BASE sets automatically.

Locks Topics:

Using the SET ROWLOCKS Command to Lock Rows
Using the SET VERIFY Command to Verify Data Entry
Displaying Multi-User Locks
Clearing Buffers with the SET CLEAR Command
Other Multi-User Considerations

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.7 Using the SET VERIFY Command to Verify Data Entry

The R:BASE default for concurrency control is COLUMN checking. That is, R:BASE does not alert a user to
a possible conflict unless two users attempt to update the same column in the same row. The SET VERIFY
ROW command checks all values in a row for possible conflicts.

Locks Topics:

Using the SET ROWLOCKS Command to Lock Rows
Using SET LOCK to Set Exclusive Table Locks
Displaying Multi-User Locks
Clearing Buffers with the SET CLEAR Command
Other Multi-User Considerations

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.8 Using the SET ROWLOCKS Command to Lock Rows

When R:BASE is running in multi-user mode, the user has the added capability of forcing R:BASE to use
row-level locking on some R:BASE commands. By default, the SET ROWLOCKS command is set on. You
can set ROWLOCKS by choosing Utilities: Settings... then click the Multi-User button, or using the SET
ROWLOCKS command at the R> Prompt. Setting ROWLOCKS off is not recommended if all users intend
to update the same tables.

R:BASE always uses row-level locking for the EDIT, EDIT USING, and ENTER commands.

Locks Topics:

Oterro 11 Help Manual484

Copyright © 1982-2024 R:BASE Technologies, Inc.

Using the SET VERIFY Command to Verify Data Entry
Using SET LOCK to Set Exclusive Table Locks
Displaying Multi-User Locks
Clearing Buffers with the SET CLEAR Command
Other Multi-User Considerations

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.9 Setting Up for Network Use

To set R:BASE up in a network environment, you need to follow several simple steps:

· Verify how many seats that you are licensed to install R:BASE on.
· Delete ALL old configuration files on ALL local and network drives.
· Install R:BASE locally, to all the workstations that you are licensed for, and will be using.
· Place ALL database and application files on a shared network drive that is accessible from all the

workstations.
· Create either a startup file, or a Desktop Shortcut Icon to connect to your database and run your

applications.

The following topics provide information you need to know after you have installed R:BASE on a multi-
user system.

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Sharing Network Resources
Concurrency Control
Setting the Multi-User Default
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.10 Sharing Network Resources

When R:BASE is on a local area network, users can share R:BASE program files, printers, hard disks,
directories and databases. You can also have R:BASE program files on a local drive or workstation;
however those files will only be available to the user of that particular machine.

R:BASE on a network allows multiple users to simultaneously create and share new and existing
databases, add, change, and print data, as if each user were the only one using that database. To ensure
data integrity, R:BASE includes automatic concurrency control and a locking system that eliminates
conflicts, such as two users attempting to change the same data at the same time. R:BASE has
commands that allow a user to manually set the locks and wait periods that prevent conflicts.

Whether an R:BASE program or database files are stored on a network server or local hard drive, the
limit on the number of seats using R:BASE remains in effect. Also, only a limited number of users can
access some parts of R:BASE at the same time. For example, although users can share program files,
only one user at a time can import data to a given database with the Import/Export utility, create or alter
the structure of a database, or create, edit, or convert a given application file.

R:BASE can use most printers that are compatible with your network operating system. In some cases,
you need only attach the printer to print from R:BASE. In other cases, you must identify the printer to
the network operating system and initialize the print spooler.

R:BASE Reference Topics 485

Copyright © 1982-2024 R:BASE Technologies, Inc.

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Concurrency Control
Setting the Multi-User Default
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.11 Setting the Multi-User Default

To set R:BASE so that it starts in multi-user mode by default, edit the R:BASE configuration file to include
the command SET MULTI ON. This file may contain the user's name, but does not need to be unique to all
workstations.

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.12 Concurrency Control

On a network, R:BASE automatically performs concurrency control, locking, and resource waiting to
prevent two users from modifying the same data at the same time.

Concurrency control is how R:BASE controls multiple access to tables when users are using forms or the
EDIT command. Concurrency control, row, table and database locks only affect operations in which users
are storing or altering data already stored on a disk.

R:BASE allows as much access to database resources as possible and keeps the duration of locking as
brief as possible. However, the extent to which users are locked out of resources depends on the
operations that cause R:BASE to issue the locks.

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.13 Resource Waiting

When a command has been locked out of a resource--database, table, column--R:BASE checks to see if
the requested resource is available while in the waiting period. If the resource becomes available, the
user can proceed. If not, R:BASE prompts the user to either terminate the request or continue waiting.
While the user waits, R:BASE displays a message indicating the approximate percentage of wait time
remaining.

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Schema Reading Mode with SET STATICDB

Oterro 11 Help Manual486

Copyright © 1982-2024 R:BASE Technologies, Inc.

Locks
SET INTERVAL
SET WAIT

8.11.13.1 Schema Reading Mode with SET STATICDB

In a multi-user environment, R:BASE must be aware of any schema modifications made by a user. Being
aware of schema modifications, which is necessary for database integrity, entails constantly re-reading
schema information.

Because many data-processing operations do not make frequent schema changes to the database, such
a re-reading unnecessarily slows down processing.

The command SET STATICDB ON instructs R:BASE to prevent any schema modifications, therefore,
R:BASE does not read schema information. By default, STATICDB is set off. SET STATICDB OFF forces a
re-read of schema information before running any command.

When connecting to a database with STATICDB set on, R:BASE displays "Database Schema is Read-
Only." When STATICDB is set on, the Data Designer and the "New" and "Design" buttons for Tables and
Views in the Database Explorer are inactive. Also, the following R:BASE commands are not allowed when
STATICDB is set on.

ALTER TABLE* CREATE INDEX

ATTACH DETACH

COMMENT ON* DROP*

* Access not allowed to tables created prior to database connection.

If a user has STATICDB set off, that user cannot connect to a database being used by a user who has
STATICDB set on. All users accessing the same database must have matching STATICDB settings.

When STATICDB is set on, only temporary tables and views can be created; these are deleted when
disconnecting from the database.

The BACKUP ALL and UNLOAD ALL commands do not act upon temporary tables. You can, however,
backup individual temporary tables with the BACKUP command. Similarly, UNLOAD permits copying of
individual temporary tables to the selected output device.

You can find out what the current STATICDB setting is with the SHOW STATICDB command. When
STATICDB is set on, the LIST TABLE command will display the temporary table and view names dimmed.
Also, you can capture the current STATICDB setting as a value with CVAL, for example:

SET VAR vcval = (CVAL('STATICDB'))

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Locks

8.11.14 Types of Locks

The Multi-User Concurrency Control and Locking Table describes the automatic concurrency control and
locks used in multi-user mode and the commands that initiate them. Operations that only view data or
the database structure are not affected by concurrency control or locking.

The Accessing Tables and Databases Table shows what happens when different commands try to access
a table or database already being used by another command. The columns represent the type of control
or lock already placed on the table or database. Each row has a heading with the name of the control or
lock needed by the command trying to gain access to a table or database.

R:BASE Reference Topics 487

Copyright © 1982-2024 R:BASE Technologies, Inc.

Locks Topics:

Using the SET ROWLOCKS Command to Lock Rows
Using the SET VERIFY Command to Verify Data Entry
Using SET LOCK to Set Exclusive Table Locks
Displaying Multi-User Locks
Clearing Buffers with the SET CLEAR Command
Other Multi-User Considerations

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB

8.11.14.1 Multi-User Concurrency Control and Locking

The following table displays multi-user concurrency control and locking used for several R:BASE
commands.

Type of Lock Command Description

Concurrency Control EDIT
EDIT USING
ENTER

Prevents one user from accidentally
overwriting another user's changes.
These commands can access the
same table simultaneously.

Row Lock DELETE ROWS
ENTER form
INSERT values
LOAD FROM filespec
UPDATE

When SET ROWLOCKS is on, a lock
is only applied to a row. When off, a
table lock is in effect.

Table Lock BACKUP*
DROP
RULES
FORMS
GRANT
INSERT subselect
RBLABELS
LOAD from filespec
REPORTS
RESTORE
REVOKE
RULES
SET LOCK ON
UNLOAD*

Must wait for commands that obtain
table and database locks. Once
obtained, this lock excludes all other
concurrency control and locking until
these commands have finished.

Full Database Lock BACKUP ALL
RELOAD
UNLOAD ALL

All tables in the database are locked.

Database Schema Lock ALTER TABLE
CREATE SCHEMA
CREATE TABLE
CREATE VIEW
CREATE INDEX
DROP INDEX
DROP COLUMN
DROP TABLE
DROP VIEW
PROJECT
RENAME

Engages a full database lock
preventing schema modifications,
then releases the schema lock
remaining in table lock.

Cursor Lock OPEN cursorname Stops database schema commands
but allows table locks; acts as a
table lock.

Oterro 11 Help Manual488

Copyright © 1982-2024 R:BASE Technologies, Inc.

*A table lock is placed only if one table is unloaded. A database lock is placed if more than one table is
unloaded.

8.11.14.2 Accessing Tables and Databases

The following table displays the access available to tables and databases during locks.

Concurrency
Control

Cursor Lock Row Lock Table
Lock

Database
Lock

Schema
Lock

Cursor Lock Access Access Access Wait Quit Wait

Row Lock Access Access Access Wait Quit Wait

Concurrenc
y Control

Access Access Access Wait Quit Wait

Table Lock Wait Wait Wait Wait Quit Wait

Database
Lock

Wait Wait Wait Wait Quit Wait

Schema
Lock

Wait Wait Wait Wait Quit Wait

8.11.15 Effects of the SET INTERVAL Command

The SET INTERVAL command specifies the amount of time that is to elapse before R:BASE retries the
command that caused a conflict. This period is a maximum of nine tenths of a second, with the default of
five tenths.

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks

8.11.16 Effects of the SET WAIT Command

The default waiting period is four seconds. You can change the waiting period by choosing Settings >
Configuration Settings, or at the R> Prompt with the SET WAIT command.

The SET WAIT command specifies the period in seconds in which R:BASE continues to retry the last
command before stopping processing. Rather than stopping processing as soon as it encounters a lock,
R:BASE retries some commands. For more information about how R:BASE handles lock conflicts, see the
Accessing Tables and Databases Table.

If you set the wait period too long, you can have your users sitting unproductively for long periods. Be
sure you set manual table locks (discussed later) only when absolutely necessary. If users are running
programs that lock tables, set resource wait periods reasonably short to avoid users leaving workstations
for a long without exiting the database.

A wait period can help prevent a deadlock. A deadlock occurs if a user locks a table and then waits for a
table previously locked by a second user, who in turn is waiting for the table locked by the first user.

R:BASE prevents deadlocks because a command either accesses a resource or eventually stops trying to
obtain access. If you issued a command from the R> Prompt, R:BASE asks you when the wait period
expires whether to keep waiting or cancel the command. If the command was issued from a command
file, R:BASE retries the command until the wait period expires and then proceeds to the next command.

R:BASE Reference Topics 489

Copyright © 1982-2024 R:BASE Technologies, Inc.

Multi-User Mode Topics:

Introduction to Using R:BASE on a Network
Setting Up for Network Use
Sharing Network Resources
Setting the Multi-User Default
Concurrency Control
Resource Waiting
Schema Reading Mode with SET STATICDB
Locks
SET INTERVAL

8.11.17 Single-User Mode

To operate in single-user mode:

1. Have all users disconnect from the database.
2. Enter SET MULTI OFF at the R> Prompt.
3. Reconnect one user to the database.

SET CLEAR

If you do a process in a single-user environment, you will improve performance by using SET CLEAR OFF
before executing commands that change or add rows to the database. SET CLEAR OFF sets up a 5K
buffer to hold changes. Changes are written to disk when you SET CLEAR ON, when the buffer is full or is
needed for the next page of data, or when you disconnect the database or exit from R:BASE. CLEAR can
be set differently by individual workstations and is ignored in multi-user mode.

8.12 Purpose of a Rule

A data entry rule ensures that the data entered into a column meets the criteria you specify. You can use
rules to do the following:

· Prevent duplicate information from being entered. For example, a new stock number cannot be the
same as an existing one.

· Verify that the data being entered corresponds with data elsewhere in the database. For example,
the product stock number must exist in a table before you enter a sales transaction for the product.

· Prevent a row from being deleted if it corresponds with data elsewhere in the database. For
example, if a transaction refers to a customer, the customer cannot be deleted from the customer
table.

· Define a value range. For example, when you enter a salary, it must be between $15,000 and
$50,000. You can either specify a maximum value, a minimum value, or a range of values.

When you enter or edit data, R:BASE checks the data you enter with the corresponding rules. If the
conditions of a particular rule are not met, R:BASE displays the error message defined for that rule and
does not add the row. You can turn the rules setting on or off; the RULES setting must be on for R:BASE
to check them.

As you use and modify the tables in your database, you might need to revise the data entry rules. For
example, if you rename a column or table used in the WHERE clause of a rule definition, you must update
the rule to reflect the change.

You can delete rules that no longer apply to your database. For example, delete rules that are associated
with a column you have deleted from a table.

See also:

DROP Command
RENAME Command
RULES Command
SET RULES Command

Oterro 11 Help Manual490

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.13 Reserved Words

You must review all table and column names to be sure that no invalid names are defined and no
reserved words are used.

In the current version, a 1-128 character alpha-numeric name must be specified for a column. Spaces
are NOT permitted. Valid names must start with an alpha character and can include the following
symbols:

· Letters (A-Z)
· Numbers (0-9)
· _ (underscore)
· # (pound sign) *
· $ (dollar sign) *
· % (percent sign) *

*Note: For ODBC compliance, it is NOT recommended to use the #, $, or % even though R:BASE
permits it.

Review your table and column names that may begin with a number. Check for any characters that are
not supported like a question mark "?" or a greater than character ">".

Also review your table and column names to verify that no reserved words are used. These words,
commands, keywords, and other names are to be used exclusively by the R:BASE database. Names
used by System Tables, System Views and System Columns are also reserved words. As a rule, all
words beginning with "SYS" are reserved.

Do not use reserved words or any shorter forms of them as names for columns, tables, or views. As a
rule, if the word is a reserved word, R:BASE will flag it. R:BASE will not allow you to use a reserved word
as a column or table name, but this MAY NOT always be the case. For example in the table designer,
R:BASE may not warn you about REF, short for REFERENCES, but REF will not be allowed in a
command file. If a particular column or table is giving you problems, please check out the list below and
consider all shortened versions of the words listed here.

The following is a list of all known reserved words, commands, keywords, and other names that are in
effect when ANSI is set on, which is the default setting.

ABORT
ABS
ABSOLUTE
ACOS
ADA
ADD
AINT
ALL
ALTER
AND
ANINT
ANSI
ANY
APPEND
AS
ASC
ASCII
ASIN
ASSIGN
AT
ATAN
ATAN2
ATT

CHDIR
CHDRV
CHECK
CHKDSK
CHKKEY
CHOOSE
CLEAR
CLOSE
CLS
COBOL
CODELOCK
COLLATE
COLLATEC
COLOR
COLUMN
COLUMNS
COMMENT
COMMIT
COMPUTE
COMPUTED
CONNECT
CONSTRAINT
CONTAINS

ENDIF
ENDS
ENDSW
ENDWHILE
ENTER
ENVVAL
EQ
EQNULL
ERASE
ERROR
ESC
ESCAPE
EXCEPT
EXECUTE
EXISTS
EXIT
EXP
EXPAND
EXPLODE
EXPRESS
FAILS
FASTFK
FASTLOCK

IFLT
IFRC
IHASH
IHR
IMIN
IMON
IN
INDEX
INDICATOR
INI
INITPOS
INPUT
INSERT
INT
INTEGER
INTENSITY
INTERSECT
INTERVAL
INTO
IS
ISEC
ISTAT
IYR

MOD
MODULE
MOUSE
MOVE
MPW
MULTI
NAME
NE
NEW
NEWPAGE
NEWROW
NEXT
NEXTROW
NEXTTAB
NINT
NOCHECK
NOECHO
NOFILL
NOHEADER
NONE
NONUM
NOT
NOTE

R:BASE Reference Topics 491

Copyright © 1982-2024 R:BASE Technologies, Inc.

ATTACH
AUTHORIZATION
AUTHORIZE
AUTOCHK
AUTOCOMMIT
AUTOCONVERT
AUTODROP
AUTONUM
AUTONUMBER
AUTORECOVER
AUTOROWVER
AUTOSKIP
AUTOSYNC
AUTOUPGRADE
AVERAGE
AVG
BACKGRND
BACKUP
BEEP
BEGIN
BEGINS
BELL
BETWEEN
BIT
BITNOTE
BLINK
BLINKING
BOTH
BREAK
BRND
BROWSE
BUILD
BY
C
CALL
CASCADE
CASE
CASEP
CD
CGA
CENTURY
CHANGE
CHAR
CHARACTER

CONTINUE
COPY
COS
COSH
COUNT
CREATE
CROSSTAB
CTR
CTXT
CURRENCY
CURRENT
CURSOR
CURSORS
CVAL
DAT
DATA
DATE
DATETIME
DEBUG
DECIMAL
DECLARE
DEFAULT
DEFINE
DELETE
DESC
DETACH
DEXTRACT
DIALOG
DIM
DIR
DISCONNECT
DISPLAY
DISTINCT
DOUBLE
DRAW
DROP
DUPLICAT
DUPLICATE
ECHO
EDIT
EDITOR
ELSE
END
ENDC

FEEDBACK
FETCH
FILES
FILL
FILLIN
FIRST
FLOAT
FLUSH
FOLD
FOR
FOREGRND
FOREIGN
FORMAT
FORMATTED
FORMS
FORTRAN
FOUND
FROM
FULL
FV1
FV2
GATEWAY
GE
GET
GETDATE
GETKEY
GETVAL
GO
GOTO
GRANT
GROUPED
GT
HAVING
HEADING
HEADINGS
HELP
ICAP1
ICAP2
ICHAR
IDAY
IDWK
IF
IFEQ
IFGT

IYR4
JDATE
JOIN
KEY
KEYBOARD
KEYMAP
LABEL
LANGUAGE
LAST
LASTKEY
LAUNCH
LAVG
LAYOUT
LBLPRINT
LCFOLD
LE
LIKE
LIMIT
LINEEND
LINES
LIST
LISTATT
LISTREL
LJS
LMAX
LMIN
LOAD
LOCK
LOG
LOG10
LOOKUP
LOOKUPS
LT
LUC
MANOPT
MAX
MAXIMUM
MAXTRANS
MD
MENU
MESSAGES
MIN
MINIMUM
MKDIR

NOTE_PAD
NULL
NUM
NUMERIC
OF
OFF
ON
OPEN
OPTION
OPTIONS
OR
ORDER
OUTER
OUTPUT
OWNER
PACK
PAGE
PAGEMODE
PAGEROW
PASCAL
PASSTAB
PASSTHROUGH
PAUSE
PLAYBACK
PLI
PLUGINS
PMT1
PMT2
POINTER
PRECISION
PREF
PREFIX
PREVROW
PREVTAB
PRIMARY
PRINT
PRINTER
PRIOR
PRIVILEGE
PRNSETUP
PROC
PROCEDURE
PROJECT
PROMPT

PROMPTS
PROPERTY
PUBLIC
PUT
PV1
PV2
QBE
QUALCOLS
QUERY
QUIT
RATE1
RATE2
RATE3
RBAPP
RBBEDIT
RBDEFINE
RBEDIT
RBGSIZE
RBLABELS
RBSYNC

SATTACH
SAVEROW
SCHEMA
SCONNECT
SCRATCH
SCREEN
SCROLL
SDETACH
SECTION
SELECT
SELMARGIN
SEQUENCE
SERVER
SET
SFIL
SGET
SHOW
SIGN
SIN
SINH

TAN
TANH
TDWK
TERM1
TERM2
TERM3
TERMINAL
TEXT
TEXTRACT
TIME
TIMEOUT
TITLE
TMON
TO
TOLERANCE
TRACE
TRANSACT
TRIG
TYPE
UDF

Oterro 11 Help Manual492

Copyright © 1982-2024 R:BASE Technologies, Inc.

RBSYSTEM
RD
RDATE
READ
READ/WRITE
REAL
RECALC
RECORD
RED
REDEFINE
REFERENCES
REFRESH
RELATIVE
RELOAD
REMOVE
RENAME
REPORTS
RESET
RESTORE
RETURN
REVERSE
REVOKE
RHIDE
RJS
RMDIR
ROLLBACK
ROUND
ROW
ROWLOCKS
RPHONE
RPW
RSHOW
RTIME
RULES
RUN

SKIP
SLEN
SLOC
SMALLINT
SMOVE
SNAP
SOME
SORT
SORTED
SOUNDS
SOUNDS_L
SOUNDS_LIKE
SPUT
SQLCODE
SQLERROR
SQRT
SRPL
SSQL
SSUB
STARTUP
STATICDB
STDEV
STORE
STRIM
STRUCTURE
SUB
SUBTRACT
SUFFIX
SUM
SWITCH
SYS
TABLE
TABLES
TABSIZE
TALLY

ULC
UNION
UNIQUE
UNLOAD
UNNAMED
UPDATE
UPGRADE
USER
USERAPP
USING
VALUES
VARBIT
VARCHAR
VARIABLE
VARIANCE
VERIFY
VERSION
VIEW
VIEWS
WAIT
WALKMENU
WHENEVER
WHERE
WHILE
WHILEOPT
WIDTH
WITH
WORK
WRAP
WRITE
YEAR
ZERO
ZIP

If you are still using a legacy version of R:BASE, it is recommended that you perform these table and
column name changes in that version. After making the table and column names changes, R:BASE will
update the form, report, and label column objects with the appropriate new name. However, if any of the
columns and tables are listed in the form, report, and label variable expressions, you must manually edit
these expressions.

On paper, record any table and column name changes. Later in the conversion process when you're
updating your command files, you will need to make these necessary name changes for the command
files as well.

8.14 SQL - Information

Structured Query Language (SQL) commands provide a standard, machine-independent relational
database language.

The American National Standards Institute (ANSI) provides a basic description of the SQL language. The
R:BASE/Oterro database provides a superset of this standard. The Oterro database implementation
meets the requirements of ANSI 1989 Level 2 SQL with 1992 extensions.

SQL, a language developed specifically for relational databases, enables you to define, modify, and
query a relational database. SQL is not a programming language, but a standard set of commands that
work with a relational database.

The R:BASE/Oterro database incorporates the SQL commands into its broader range of commands. SQL
commands are not treated separately in the Oterro database command because they are not special in

R:BASE Reference Topics 493

Copyright © 1982-2024 R:BASE Technologies, Inc.

any sense. SQL was originally defined as and must be considered an intrinsic part of a database
management system.

SQL provides the following sets of commands:

Data Definition Language

Includes the commands needed to create the basic database structures—tables, columns, and views.

· ALTER TABLE (extension to SQL)
· COMMENT ON (extension to SQL)
· CREATE INDEX (extension to SQL)
· CREATE SCHEMA AUTHORIZATION
· CREATE TABLE
· CREATE VIEW
· DROP INDEX (extension to SQL)
· DROP TABLE (extension to SQL)
· DROP VIEW (extension to SQL)

Data Manipulation Language

Provides modification and query capabilities.

· DELETE
· INSERT
· SELECT
· UPDATE

Data Security Language Commands

Control access to the database.

· GRANT
· REVOKE (extension to SQL)

Transaction Processing Commands

Control when data is saved in the database, thereby allowing the restoration of data to a previous state.

· SET AUTOCOMMIT (extension to SQL)
· SET LOCK (extension to SQL)
· SET MAXTRANS (extension to SQL)
· SET TRANSACT (extension to SQL)

8.15 Stored Procedures & Triggers

A Stored Procedure is a collection of R:BASE commands and/or SQL statements that are stored in the
database.

Stored Procedures offer a powerful way for developers to add value and ease of maintenance to their
R:BASE databases and applications. Moving some of the common business and data access logic out of
the R:BASE program into the database centralizes functionality in one place, making it accessible to the
R:BASE program as well as any third party ODBC application.

You can run a Stored Procedure "manually" using the CALL command, or "automatically" by using
database Triggers.

Oterro 11 Help Manual494

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.15.1 Creating Stored Procedures

Stored Procedures are created based upon an existing command file. The process of loading the
command file into the database as a Stored Procedure can be performed through the Database Explorer
"Stored Procedure" Group Bar menu option, or by using the PUT command.

PUT

A Stored Procedure can be created in the R:BASE Editor, and then can be loaded into the database as
follows:

Options:

argname datatype
The argument name and data type.

comment
An optional comment for the argument or, if placed after RETURN, an optional comment for the entire
procedure. The comment must be enclosed in the current QUOTES character.

filename
The filename in ASCII text format, with full path, to load as the Stored Procedure.

procname
Specifies the procedure name. If a procedure by this name already exists in the database, an error is
generated. The procedure name is limited to 128 characters.

RETURN datatype
Datatype of the value returned by the procedure.

Note:

· To clear any previous arguments that were stored for a procedure, use the PUT command as follows:

PUT filename AS procname RETURN

8.15.2 Using Stored Procedures

Argument List
When you load a Stored Procedure into a database, you specify arguments to be passed to it. These
arguments are used within the procedure. When the procedure is called, the number and type of
arguments passed must match the number and type specified when the procedure was stored in the
database. When an argument name is referenced in the Stored Procedure code, the argument name
must be preceded by a period unless it is a table or column name, then it must be preceded by an
ampersand (&). For example:

UPDATE &p1_table SET col = 99 WHERE col = .p2

The arguments names are specified when the procedure is stored in the database.

Return Values

R:BASE Reference Topics 495

Copyright © 1982-2024 R:BASE Technologies, Inc.

The value to be returned by a Stored Procedure is specified in the procedure code following the keyword
RETURN. For example, RETURN 'Los Angeles'.

The value returned must match the data type specified when the procedure was stored.

Notes:

· If you are replacing an existing procedure, you must LOCK the procedure first with either the GET
LOCK or the SET PROCEDURE command. Once the procedure is locked, it is replaced by an updated
file using the PUT command. A procedure cannot be replaced unless it is locked. A procedure is
automatically unlocked when replaced with the PUT command.

· The RETURN varname option is used ONLY within a Stored Procedure to return a value. The returned
value is stored in the STP_RETURN system variable. This option will return an -ERROR- when used
outside a Stored Procedure. The default is TEXT 8 characters, but if you want more, you can set it to
a larger value.

You can control the maximum length at procedure definition time, or by editing the SYS_PROC_LEN
column in SYS_PROC_COLS system table.

Example 01 (to set the limit for the RETURN value to 30 characters):

PUT MyTest.PRC AS MyTest P1 INTEGER RETURN TEXT (30)

· To clear any previous arguments that were stored for a procedure, use the PUT command as
follows:

PUT filename AS procname RETURN

8.15.2.1 CALL

To run a Stored Procedure you can use the CALL command like a function or run the CALL command at
the R> Prompt.

Use the CALL command like a function with the following syntax:

SET VAR v1 = (CALL procname(arglist))

Run the CALL command from the R> Prompt with the following syntax:

CALL procname(arglist)

When the CALL command is run at the R> Prompt, the return value from the Stored Procedure is placed
in the variable STP_RETURN. The return value can be an expression.

procname
The procedure name.

arglist
The argument values separated by commas. An arglist must always be used, even if empty. For
example:

SET VAR v1 = (CALL procname ()).

Oterro 11 Help Manual496

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.15.2.2 GET

The GET command is used to read a Stored Procedure from the database into an ASCII command file. If
the LOCK option is used with the GET command, the procedure can be replaced by using PUT.

Options:

filename
The name of the ASCII text format file the Stored Procedure is placed in.

LOCK
Locks the procedure so it cannot be locked or unlocked by another user. When a procedure is locked,
only the user placing the lock can replace the procedure. The NAME setting is used for identification of
the user.

procname
Specifies the procedure name. The procedure name is limited to 128 characters.

8.15.2.3 SET PROCEDURE

The SET PROCEDURE command locks a procedure so it can be replaced. It works like the GET LOCK
command without retrieving the Stored Procedure into an ASCII file. ON sets the lock; OFF releases the
lock placed by the SET PROCEDURE or the GET commands.

When a procedure is locked, only the user placing the lock can replace the procedure or remove the
lock. The NAME setting is used for identification of the user.

8.15.2.4 Examples

To Create a Stored Procedure

Create the following command file, INS.RMD, in R:BASE Editor:

*(INS.RMD:)
IF (.p1 > 105) THEN
INSERT INTO contact (custid, contlname) VALUES (.p1, .p2)
RETURN 1

ELSE
RETURN 0

ENDIF

To create the Stored Procedure from the .RMD file:

PUT INS.RMD AS proc1 p1 INT, p2 TEXT RETURN INTEGER

The following Stored Procedure example will generate one new row in contact and set v1 = 1.

SET VAR vname = 'Dunn'
SET VAR v1 = (CALL proc1 (106, .vname))

The following Stored Procedure example will set v1 = 0.

SET VAR vname = 'Dunn'

R:BASE Reference Topics 497

Copyright © 1982-2024 R:BASE Technologies, Inc.

SET VAR v1 = (CALL proc1 (100, .vname))

To Delete a Stored Procedure

To delete a Stored Procedure, use the DROP command with the following syntax:

DROP PROCEDURE procname

Optionally, you can enter the following code at the R> Prompt:

SET VAR vProcID = sys_proc_id IN sys_procedures +
WHERE sys_proc_name = 'procname'

DELETE ROWS FROM sys_procedures +
WHERE sys_proc_id = .vProcID

DELETE ROWS FROM sys_proc_mods +
WHERE sys_proc_id = .vProcID

DELETE ROWS FROM sys_proc_cols +
WHERE sys_proc_id = .vProcID

To Rename a Stored Procedure

To rename a Stored Procedure, use the RENAME command with the following syntax:

RENAME PROCEDURE procname1 TO procname2

To List Stored Procedures

With the LIST command, you can list every Stored Procedure in a database or list information about a
specific Stored Procedure.

To display the name and a description for every procedure in the open database, use the following
syntax:

LIST PROCEDURE

To display a specific procedure and its attributes, use the following syntax:

LIST PROCEDURE procname

This option displays the name, description, ID, date last modified, version, locked by (if locked), and if
applicable, the return type and description for the specified Stored Procedure. If the Stored Procedure
has arguments, the number of arguments and argument names and attributes will be listed.

8.15.3 Restricted Commands

Stored procedures can contain all R:BASE/SQL commands except for the following:

CODELOCK FORMS

RBEDIT RESTORE

CONNECT PACK

RBLABELS RULES

DISCONNECT SET (without a keyword)

RBAPP RBDEFINE

REPORTS REVOKE

GRANT

Oterro 11 Help Manual498

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.15.4 Stored Procedure System Tables

The R:BASE system tables are created by R:BASE when a database is created. They contain system
information. The following are new system tables. Stored Procedures are stored in the database in the
system table called SYS_PROCEDURES. Supporting system tables are SYS_PROC_COLS and
SYS_PROC_MODS.

Table: sys_PROCEDURES

Column Name Data Type Description

sys_proc_id INTEGER Procedure identification

sys_proc_name NOTE Procedure name

sys_proc_locked_by NOTE Last user to do a PUT or LOCK

sys_proc_comment NOTE Descriptive comment for procedure

sys_proc_src LONG VARCHAR Procedure source

sys_proc_mod_ts DATETIME Timestamp of procedure

sys_proc_obj LONG VARBIT Reserved for future use

sys_proc_usage INTEGER Reserved for future use

sys_proc_flags INTEGER Internal binary flags. Bit 0 is the
LOCK flag.

sys_proc_version INTEGER Version number of procedure

Table: sys_proc_cols

Column Name Data Type Description

sys_proc_col_id INTEGER Argument identification

sys_proc_id INTEGER Procedure identification

sys_proc_col_name NOTE Name of argument

sys_proc_iotype INTEGER Argument type values equal to:
SQL_RETURN_VALUE (5)
SQL_PARAM_OUTPUT (4)
SQL_PARM_INPUT (1)
SQL_PARAM_INPUT_OUTPUT (2)
Currently only INPUT and RETURN
types are supported.

sys_proc_datatype INTEGER Datatype of argument

sys_proc_len INTEGER Argument data length

sys_proc_scale INTEGER Argument data scale

sys_proc_flags INTEGER Internal binary flags

sys_proc_comment NOTE Descriptive comment for argument

sys_proc_defvalu NOTE Reserved for future use

Table: sys_proc_mods

Column Name Data Type Description

sys_proc_mod_id INTEGER Archive identification

sys_proc_id INTEGER Procedure identification

sys_proc_mod_ts DATETIME Timestamp of archived procedure

sys_proc_user NOTE User who did a PUT on procedure

sys_proc_comment NOTE Descriptive comment for procedure

sys_proc_fc LONG VARCHAR Reserved for future use

sys_proc_delta LONG VARBIT Reserved for future use

sys_proc_version INTEGER Version of archive

Table: sys_TRIGGERS

Column Name Data Type Description

sys_table_id INTEGER Table identification

sys_trig_ins INTEGER Id of INSERT procedure

R:BASE Reference Topics 499

Copyright © 1982-2024 R:BASE Technologies, Inc.

sys_trig_upd INTEGER Id of UPDATE procedure

sys_trig_del INTEGER Id of DELETE procedure

8.15.5 Triggers

A database trigger is procedural code that is automatically executed in response to certain events on a
particular table in the database. Triggers can restrict access to specific data, perform logging, or audit
data modifications.

There are "BEFORE" triggers and "AFTER" triggers which identifies the time of execution of the trigger. A
trigger can be set to automatically run a Stored Procedure before and/or after an update, delete, or
insert event occurs in a table.

There are three triggering events that cause triggers to fire:

· INSERT event (as a new record is being inserted into the database).
· UPDATE event (as a record is being changed).
· DELETE event (as a record is being deleted).

Notes:

· R:BASE triggers occur only once per INSERT, UPDATE, or DELETE event.

· A table can have both "BEFORE" and "AFTER" Triggers, only one, or none.

· Triggers are stored in the System Table SYS_TRIGGERS

· Procedures that are run with triggers must be stored with no arguments. See "Argument List"
under Using Stored Procedures

8.15.5.1 Using Triggers

The update, delete, or insert event can be initiated through the UPDATE, DELETE, or INSERT R:BASE/SQL
commands, or through an R:BASE form.

Typical Trigger Usage:

· BEFORE - data validation before the action (inventory checks, account limit checks)
· AFTER- update of data after the action (dependent on primary keys, automated post transaction

steps)

Since a "BEFORE" Trigger runs a Stored Procedure before the row that triggered it is updated, inserted,
or deleted, you can cancel the update, insert, or delete with the ABORT TRIGGER command in the Stored
Procedure. Since the modified data has been "committed" with an "AFTER" trigger, you cannot abort the
action in the Stored Procedure.

Also, you can verify the action being performed in an update trigger on the row by using a SELECT
command with the WHERE CURRENT OF SYS_OLD/SYS_NEW syntax to check the row before/after the
update.

Creating a Trigger

Triggers can be created using the Data Designer, or with the CREATE TABLE or ALTER TABLE commands.
When you use the ALTER TABLE command you must define the insert triggers in the same command. The
same applies for update and delete. Do not use one alter table command to add the "BEFORE" insert
trigger and then another alter table to add the "AFTER" trigger. Do them both in the same command.

Removing a Trigger

When you drop a trigger with the ALTER TABLE command, you do not have to specify the "BEFORE" or
"AFTER" trigger. The DROP of the insert trigger, for example, drops both parts if they exist.

Oterro 11 Help Manual500

Copyright © 1982-2024 R:BASE Technologies, Inc.

Listing Defined Triggers

To LIST all the tables in the open database that have triggers and the triggers, use the following syntax:

LIST TRIGGER

To list triggers for a specified table, use the following syntax:

LIST TRIGGER tblname

Example:

ALTER TABLE TableName ADD TRIGGER INSERT ProcName
ALTER TABLE TableName ADD TRIGGER UPDATE ProcName
ALTER TABLE TableName ADD TRIGGER DELETE ProcName
ALTER TABLE TableName ADD TRIGGER INSERT AFTER ProcName
ALTER TABLE TableName ADD TRIGGER UPDATE AFTER ProcName
ALTER TABLE TableName ADD TRIGGER DELETE AFTER ProcName

See also:

SYS_NEW
SYS_OLD

For a sample database using Triggers, please locate the "Stored Procedures, Triggers and After Triggers"
sample located at http://www.razzak.com/sampleapplications/

8.15.5.2 SYS_NEW

The SYS_NEW parameter is used in a WHERE clause within, and only within, the context of a Trigger.

This virtual pointer is available to INSERT and UPDATE triggers. It allows code to access the contents of
the row as it will be after the INSERT or UPDATE action. Using this in the body of a WHERE clause allows
code to act on the contents of that virtual row and NOT fire off another trigger.

The following is a list the trigger types available for use with SYS_NEW, and whether or not they are
updatable:

· BEFORE INSERT: Updatable
· AFTER INSERT: Read only
· BEFORE UPDATE: Updatable
· AFTER UPDATE: Read only

Note: The use of functions or expressions must be performed outside of the virtual pointer SELECT
statement, after the the variable values are captured.

Example

The following command is within the body of an Insert Trigger and is being used to increment the count
of how many items have been used.

SELECT ProductType INTO vPType INDIC v1 +
FROM SalesDetails +
WHERE CURRENT OF SYS_NEW

UPDATE ProductCount +
SET ProductCount = (ProductCount + 1) +
WHERE ProductType = .vPType

http://www.razzak.com/sampleapplications/

R:BASE Reference Topics 501

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.15.5.3 SYS_OLD

The SYS_OLD parameter is used in a WHERE clause within, and only within, the context of a Trigger.

This virtual pointer is available to UPDATE and DELETE triggers. It allows code to access the contents of
the row as it will be prior the UPDATE or DELETE action. Using this in the body of a WHERE clause allows
code to act on the contents of that virtual row and NOT fire off another trigger.

The following is a list the trigger types available for use with SYS_OLD, and whether or not they are
updatable:

· BEFORE DELETE: Read only
· BEFORE UPDATE: Read only

Note: The use of functions or expressions must be performed outside of the virtual pointer SELECT
statement, after the the variable values are captured.

Example

The following command is within the body of an Delete Trigger and is being used to automatically archive
a message from an employee messaging table.

SELECT EmployeeID,MsgDate,MsgTime,MsgBody +
INTO vEID INDIC v1,vMsgDate INDIC v2, +
vMsgTime INDIC v3,vMsgBody INDIC v4 +
FROM EmpMessage WHERE CURRENT OF SYS_OLD

INSERT INTO ArchMessage +
(EmployeeID,MsgDate,MsgTime,MsgBody,DeletedOn) +
VALUES .vEID,.vMsgDate,.vMsgTime,.vMsgBody,.#DATE

8.16 Table Joins

A join is an SQL clause that combines records from two tables in a database. When you perform a join,
you specify one column from each table to join on. These two columns contain data that is shared across
both tables. You can use multiple joins in the same SQL statement to query data from as many tables as
you like.

A join can be an inner join, an outer join, or a self join. An inner join includes only those rows that match
on the linking columns. An outer join includes all rows that match as well as all rows that don't match on
linking columns.

Most of the time, you'll do an inner join, though you will sometimes find it useful to do an outer join. For
example, you need an outer join (like the UNION command) to get all rows in these cases:

· When joining a customer table with an orders table to list the customers who ordered something in
the current month (inner join) as well as those who didn't order anything (outer join).

· When joining a budget table with an expense table to list each budget item, whether or not there
was an expense for that item in the current month.

· When comparing a header (master table) on the "one" side of a one-to-many relationship against a
detail (transaction table) on the "many" side to see all the rows of data, whether or not they have
associated details.

In R:BASE, there are two different syntactical ways to express joins. The first, called explicit join
notation, uses the keyword JOIN, whereas the second is the implicit join notation. The implicit join
notation uses commas to separate the tables to be joined in the FROM clause of a SELECTstatement.
Thus, it always computes a cross join and the WHERE clause may apply additional filtered criteria. That
filter criteria is comparable to join predicates in the explicit notation.

Example of an explicit "inner" join:

SELECT ALL FROM Product +

Oterro 11 Help Manual502

Copyright © 1982-2024 R:BASE Technologies, Inc.

INNER JOIN TransDetail ON +
TransDetail.Model = Product.Model

Example of an implicit "inner" join:

SELECT ALL FROM Product t3, TransDetail t2 +
WHERE t3.Model = t2.Model

Both of the above examples will result in the same output, only the example of the explicit "inner" join
will be faster.

8.16.1 Join Types

Depending on your requirements, you can do an "INNER" join or an "OUTER" join. The differences are:

· INNER JOIN: This will only return rows when there is at least one row in both tables that match the
join condition.

· LEFT OUTER JOIN: This will return rows that have data in the left table (left of the JOIN keyword),
even if there's no matching rows in the right table.

· RIGHT OUTER JOIN: This will return rows that have data in the right table (right of the JOIN
keyword), even if there's no matching rows in the left table.

· FULL OUTER JOIN: This will return all rows, as long as there's matching data in one of the tables.

8.16.2 More About OUTER JOIN

When you use an outer join, rows are not required to have matching values. The table order in the FROM
clause specifies the left and right table. You can include a WHERE clause and other SELECT clause options
such as GROUP BY. The result set is built from the following criteria:

· In all types of outer joins, if the same values for the linking columns are found in each table,
R:BASE joins the two rows.

· For a left outer join, R:BASE uses each value unique to the left (first) table and completes it with
nulls for the columns of the right (second) table when the linking columns do not match.

· A right outer join uses unique values found in the right (second) table and completes the rows with
nulls for columns of the left (first) table when the linking columns do not match.

· A full outer join first joins the linking values, followed by a left and right outer join.

Four Examples of Outer Joins

Below, from slowest to fastest, are four examples of how to list all the invoice numbers in an invoice
table, whether or not they have related rows in a transx table.

In each example, invoice has 1,000 rows and transx has 8,000 rows. There are 20 matches and 980 non-
matches. In other words, in the first three examples the first SELECT (inner join) finds 20 rows and the
second SELECT (outer join) finds 980 rows. And, in the last example, the LEFT OUTER JOIN performs the
query with just one SELECT.

Uncorrelated Sub-SELECT
l
This first example shows how to list the invoice numbers with a simple sub-SELECT that doesn't have a
WHERE clause correlating it to the main SELECT. It's slow, taking a long time to complete.

SELECT t2.InvId, SUM(t3.TPrice) +
FROM Invoice t2, Transx t3 +
WHERE t3.InvId = t2.InvId +
GROUP BY t2.InvId +
UNION +
SELECT Invoice.InvId, $0.00 +
FROM Invoice +
WHERE InvId NOT IN +

R:BASE Reference Topics 503

Copyright © 1982-2024 R:BASE Technologies, Inc.

(SELECT InvId FROM Transx)

Correlated Sub-SELECT

Adding a correlated WHERE clause to the sub-SELECT makes it many times faster.

SELECT t2.InvId, SUM(t3.TPrice) +
FROM Invoice t2, Transx t3 +
WHERE t3.InvId = t2.InvId +
GROUP BY t2.InvId +
UNION +
SELECT t1.InvId, $0.00 +
FROM Invoice t1 +
WHERE InvId NOT IN +
(SELECT InvId FROM Transx +
WHERE Transx.InvId = t1.InvId)

Correlated and NOT EXISTS

By changing NOT IN to NOT EXISTS for use with the correlated sub-SELECT, you can add a little more
speed.

SELECT t2.InvId, SUM(t3.TPrice) +
FROM Invoice t2, Transx t3 +
WHERE t3.InvId = t2.InvId +
GROUP BY t2.InvId +
UNION +
SELECT tl.InvId, $0.00 +
FROM Invoice t1 +
WHERE NOT EXISTS +
(SELECT InvId FROM Transx +
WHERE Transx.InvId = t1.InvId)

LEFT OUTER JOIN

By using a LEFT OUTER JOIN, and bypassing the second SELECT, you can add even more speed.

SELECT t2.InvId, SUM(t3.TPrice) +
FROM Invoice t2 LEFT OUTER JOIN Transx t3 ON +
t3.InvId = t2.InvId +
GROUP BY t2.InvId

8.17 Temporary Tables and Views

Temporary tables and views are non-permanent tables/views that only exist for the duration of a
database session. When a database session terminates, its temporary tables/views are automatically
destroyed. Temporary tables/views are only visible to the R:BASE session that creates them and remain
invisible to other R:BASE users. Several users can create temporary tables/views with the same name,
and each user will see only that particular version of the table/view.

Temporary tables are ideal for holding short-term data used by the current R:BASE session. For
example, suppose you need to do many SELECTs on the result of a complex query. An efficient strategy
is to execute the complex query once, then store the result in a temporary table. You can also create an
index on the temporary table to speed up queries with the CREATE INDEX command. In addition to
indexes, you can create rules, constraints and triggers on temporary tables.

You may CREATE or turn a permanent table into a TEMPORARY table using the enhanced Data Designer.

Oterro 11 Help Manual504

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.17.1 Using Temporary Tables/Views

Creating Temporary Tables/Views
Use the CREATE TEMPORARY TABLE command to create a temporary table. Use the CREATE TEMPORARY
VIEW command to create a temporary view. You can also use the PROJECT command to create a
temporary table based upon another table. The main difference between using the original command to
create a table or view and creating a temporary table/view is the TEMORARY parameter in the command
syntax.

Temporary Table Setting
Within the R:BASE Data Designer, there is a setting, under "Table", that will save any temporary table as
a regular permanent table. The setting can also be used to save any existing table as a temporary table.

Removing Temporary Tables/Views
You can use the DROP command to remove a temporary table or view. This is important when you are
creating temporary tables or views as you should always DROP the table or view before creating it. This
technically only affects the user running the program. To avoid this error message, use the following
technique:

Example 01:

SET ERROR MESSAGE 2038 OFF
DROP TABLE temptablename
SET ERROR MESSAGE 2038 ON

Example 02:

SET ERROR MESSAGE 677 OFF
DROP VIEW tempviewname
SET ERROR MESSAGE 677 ON

In addition to the DROP command, you can simply DISCONNECT and CONNECT the database to remove
any temporary tables/views. Temporary tables/views along with temporary System Tables are removed
when the database is disconnected.

Using Forms, Labels or Reports based upon Temporary Tables/Views
You may define all required TEMPORARY tables/views for Forms as "On Before Design Action" before
designing a form and "On Before Start" EEP before using (EDIT USING, ENTER USING, BROWSE USING)
the form.

You may define all required TEMPORARY tables/views for Reports as "On Before Design ..." action before
designing a report/sub-report and "On Before Generate ..." action.

You may define all required TEMPORARY tables/views for Labels as "On Before Design ..." action before
designing a label and "On Before Generate ..." action.

A command file, such as TempTables.RMD, can also be used to pre-define all required temporary
tables/views.

Notes:

· In regards to temporary tables in the database, always DISCONNECT and then CONNECT before
using the AUTOCHK, PACK or RELOAD commands.

· When creating a temporary table/view, the following temporary System Tables are also created:

· SYSTMP_COMMENTS
· SYSTMP_CONSTRAINTS
· SYSTMP_DEFAULTS
· SYSTMP_RULES
· SYSTMP_SERVERS
· SYSTMP_TRIGGERS
· SYSTMP_VIEWS

· Temporary tables/views were first introduced in R:BASE 6.1 (July 1997).

R:BASE Reference Topics 505

Copyright © 1982-2024 R:BASE Technologies, Inc.

8.17.2 Differentiate between Regular and Temporary Tables/Views

There are two ways to differentiate between regular and temporary tables/views. One way is to view the
Tables or Views menu within the Database Explorer. You will notice that any temporary tables or views
will have a faded icon next to the appropriate table/view name.

Another way is using the LIST command at the R> Prompt. To safely indicate which tables are temporary
tables in the LIST or LIST TABLES command, you will now see a "(T)" in front of the table name.

Here's how using the ConComp sample database:

1. Launch R:BASE
2. CONNECT ConComp
3. Switch to the R> Prompt and create a temporary tables using the following:

PROJECT TEMPORARY tCustomer FROM Customer USING ALL

Or use the following block of code in a command file to create two temporary tables

SET ERROR MESSAGE 2038 OFF
DROP TABLE tInvoiceHeader
CREATE TEMPORARY TABLE `tInvoiceHeader` +
(`TransID` INTEGER, +
`CustID` INTEGER, +
`EmpID` INTEGER, +
`TransDate` DATE, +
`BillToCompany` TEXT (40), +
`BillToAddress` TEXT (30), +
`BillToCity` TEXT (20), +
`BillToState` TEXT (2), +
`BillToZip` TEXT (10), +
`ShipToCompany` TEXT (40), +
`ShipToAddress` TEXT (30), +
`ShipToCity` TEXT (20), +
`ShipToState` TEXT (2), +
`ShipToZip` TEXT (10), +
`NetAmount` CURRENCY, +
`Freight`= (netamount* .01) CURRENCY, +
`Tax`= (netamount* .081) CURRENCY, +
`InvoiceTotal`= (NetAmount+Freight+Tax) CURRENCY)
COMMENT ON TABLE tInvoiceHeader IS 'Invoice Header Information'
DROP TABLE tInvoiceDetail
CREATE TEMPORARY TABLE `tInvoiceDetail` +
(`TransID` INTEGER, +
`DetailNum` INTEGER, +
`Model` TEXT (6), +
`Units` INTEGER, +
`Price` CURRENCY, +
`Discount` REAL, +
`SalePrice`= (Price-(Price*Discount/100)) CURRENCY, +
`ExtPrice`= (Units* SalePrice) CURRENCY)
AUTONUM `DetailNum` IN `tInvoiceDetail` USING 1,1
COMMENT ON TABLE tInvoiceDetail IS 'Invoice Header Information'
SET ERROR MESSAGE 2038 ON

LIST TABLES

You will notice the (T) in front of the temporary tables.

Oterro 11 Help Manual506

Copyright © 1982-2024 R:BASE Technologies, Inc.

4. Now create a temporary view using following:

SET ERROR MESSAGE 677 OFF
DROP VIEW tYTDInvoiceTotal
CREATE TEMP VIEW `tYTDInvoiceTotal` +
(CustID, YTDInvoiceTotal) AS +
SELECT CustID,(SUM(InvoiceTotal)) FROM TransMaster +
GROUP BY CustID
COMMENT ON VIEW `tYTDInvoiceTotal` IS +
'Year-To-Date Invoice Total by Customer'
SET ERROR MESSAGE 677 ON

LIST VIEWS

You will notice (T) in front of the tYTDInvoiceTotal view.

8.17.3 Advantages of Temporary Tables/Views

Raw Speed

Temporary Tables/Views are lightening fast! There is no multi-user checking going on.

Find a report that prints from a view whose performance is extremely slow, project a temporary table
containing only the rows needed and drive the report from the temporary table. A report that takes 5-
10 minutes to print might print in under a minute.

Flexibility

Because of the speed, you can do things you would never do with permanent tables. If you have
systems that do an extraordinary amount of massaging of data placed in a temporary table. The work
would take far longer (we are talking 10-100 times) to accomplish with a permanent table. And with
permanent tables, deleting your scratch work takes a great deal of time and each record must have a
user id in it to work correctly. With temp tables you just reconnect the database and all the temp tables
are gone, just like that.

Temporary tables/views are also supported when STATICDB is set to ON.

No database growth

The data in the temporary tables is not part of File 2- the data file. The most important thing about
temporary tables is that the actual data for a given user is written into a scratch file (.$$$). With an
actual table that data is stored in the data file.

For example, if you are using an actual table and start with a 100MB data file and add 5MB of
"temporary data" to a database, then drop the working table. Now, your data file is 105MB. Then, run
the procedure again and you'll have 110MB. Running the procedure two more times and your data file
is 120MB, and so on. You would have perform a PACK or RELOAD just to return back to the 100MB
data file after processing temporary data within actual tables. On the other hand, if you use temporary
tables your data file doesn't grow at all.

Views don't really make much difference since the only thing that would be stored in the database itself
(and they still might be with temporary views) would be the structure. Everything else is generated
when you actually use the view.

Independent

Temporary Tables/Views are specific to each session of R:BASE and that specific user.

For example, five different users or sessions, can create the same temporary table with the same
name and not interfere with the others. Only the user that created the table can see/use it. So what it

R:BASE Reference Topics 507

Copyright © 1982-2024 R:BASE Technologies, Inc.

means is that 5 different uses can be using a running a report on the temporary table/view and all 5
users have different data in the table.

The "Sales Order" option in the "Running R:BASE Your Way" sample applications bundled with R:BASE,
demonstrate the typical use of this feature.

Usability

You can treat a temporary table/view as a regular table/view. You can create Forms, Reports and
Labels based upon the temporary table/view.

A powerful use of temporary tables is to PROJECT or CREATE a temporary table to collect (LOAD) data
and allow easy editing prior to an INSERT. Since each session of R:BASE will project/create its own
private temporary table (of the same name) this is an ideal solution, say for collecting some
accounting data prior to allowing the user to post the transaction to the formal journal tables. As soon
as the insert is done, a DISCONNECT/CONNECT will eliminate the temporary table and you are ready
for next time.

Temporary tables are great when you are trying to take a huge vertical table with hundreds of
thousands of rows and farm it out to some aggregate tables.

Sometimes when you need to insert row(s) into a table based on rows in the table, (the where clause
cannot refer to the same table for the insert) You may project a temp table of the correct where
conditions and insert where column in permanent table in (select column from temp table). You can do
all kinds of variations of this one, such as using existing rows as a template which you house in a temp
table, edit for the new values and re-insert back to the permanent table.

Disadvantages of Temporary Tables/View:

The advantage of temporary tables/views is also their disadvantage. They are not permanent. Any data
you wish to be persistent must go in real tables/views.

Part

IX

Troubleshooting 509

Copyright © 1982-2024 R:BASE Technologies, Inc.

9 Troubleshooting

If you are having problems with Oterro, there are several things you should check. The list below is not
intended to be exhaustive, but it should cover the common reasons you cannot connect to or use your
Oterro databases.

1. Have you created a Data Source Name or DSN? If not, you may need to create one. However, not
all products require a DSN. R:BASE and Visual Basic, for example, can utilize DSN-less connections.

2. Does the program using Oterro have access to the DSN? For example, some applications are
installed by default as a system level application. If you create a User DSN, then the system
application will not be able to access that data source. Conversely, Visio seems to require User
based DSNs. Other programs may vary.

3. Do the database character settings match the ODBC defaults? To check this, go to an R> Prompt
and type SHOW CHAR while connected to the database. QUOTES should be set to ' (the single quote
or apostrophe), MANY should to be set to the % (the percent sign), SINGLE should be set to _ (the
underscore) and IDQUOTES should be set to ` (the back quote, usually found above the tilde or ~
character).

4. Can you use the "Check Version" utility to get the Oterro Version? If not, the driver may not be
properly installed.

5. Does the Oterro Driver display a version? If the driver is listed in the ODBC applet, but the version
is not, then make sure the Oterro DLLs were installed to your Windows System directory
(OTERRO11.DLL and OTERRO11_INS.DLL in the SysWOW64 folder for 32-bit operating systems and
OTERRO11_64.DLL and OTERRO11_64_INS.DLL in the System32 folder for 64-bit operating
systems). If these files are not present, be sure you have write or create permissions on the system
directory. If you do not, have an Administrator remove and reinstall the program.

6. Can you connect to the database with R:BASE? Are there errors?

7. Is there a Multi-User, StaticDB, Transaction or other database mode conflict? To test this, see if you
can connect to the sample DSNs with nobody else connected. You are not likely to have other
connections with the samples. If you can connect to the sample, check that the other R:BASE or
Oterro Engines connected to the database are of the same version (R:BASE 11, Runtime for R:BASE
11, R:Compiler for R:BASE 11, and Oterro 11), and are using the same settings.

8. Have you exceeded your License Count with a Numbered Version of Oterro 11? If you have, then
you will not be able to connect to the database. For example, if you have a 5 User version of Oterro
11 and there are already 5 connections to the database, then you will not be able to connect. It does
NOT matter if those other connections were made with Oterro 11 OR R:BASE OR Runtime. Once the
user count is reached, Oterro 11 Numbered will not be able to connect.

9. Is the database itself unhealthy? Check to see if the database is out of sync (Run RBSYNC), if the
database needs transaction recovery (Run RECOVER), or is in need of a Pack or Reload.

10. Can you use R:BASE to connect to the DSN? Use the following commands at the R> Prompt to
create a dummy database and attempt to connect to your DSN.

· CREATE SCHEMA AUTH TestDSN
· SCONNECT dsn_name_here
· SATTACH a_table_name_in_your_database

If you have an Owner or Password on the database, or if you don't know your DSN Name, then
replace step b. with just SCONNECT and you will be prompted. Similarly using just SATTACH will list
all available tables.

11. Are you using reserved characters or words in your DSN name? This will vary based on the
environment used to connect to the DSN. The Borland Database Engine, for example, doesn't seem
to deploy (but you can develop) with a DSN that contains the _ (underscore character). This may
depend on the version or compilation method of the product that you are using as well.

Oterro 11 Help Manual510

Copyright © 1982-2024 R:BASE Technologies, Inc.

12. Are you using reserved characters or words in your Table and Column names? For example,
R:BASE cannot use columns from another DBMS that contain spaces or that exceed 128 characters
in length.

13. Are you using SQL that is compatible with the Oterro 11 engine? For example, some other DBMSs
use the following syntax to denote a date: {d 12/27/2000}. Oterro will not understand this format.
Check the Oterro documentation for a complete listing of supported commands and functions.
Crystal Reports is notorious for generating syntax that Oterro does not comprehend. A well-
developed tool such as Crystal Reports will allow you to at least view, if not edit, the SQL that is sent
to the Oterro 11 Engine.

Part

X

Oterro 11 Help Manual512

Copyright © 1982-2024 R:BASE Technologies, Inc.

10 Technical Support

Please read over the help documentation at least once before seeking support. We have worked very
hard to make the help documentation clear and useful, but concise. It is suggested that you reread these
instructions once you have become accustomed to using the software, as new uses will become
apparent.

If you have further questions, and cannot find the answers in the documentation, you can obtain
information from the below sources:

· Email our Technical Support Staff at: support@rbase.com
· Access the R:BASE Technologies Support home page online at https://www.rbase.com/support

You may be required to purchase a technical support plan. Several support plans are available to suit the
needs of all users. Available Technical Support Plans

Please be prepared to provide the following:

· The product registration number, which is located on the invoice/order slip for the purchased product
· The type of operating system and hardware in use
· Details regarding your operating environment; such as available memory, disk space, your version

of R:BASE, local area network, special drivers, related database structures, application files, and
other files that are used or accessed by your application

All provide information will be used to better assist you.

R:BASE Technologies has a number of different services available for R:BASE products. As a registered
user, you will receive information about new features for R:BASE and other R:BASE Technologies
products. Please remember to register your software. https://www.rbase.com/register/

mailto:support@rbase.com
https://www.rbase.com/support
https://www.rbase.com/support/plans.php
https://www.rbase.com/register/

Part

XI

Oterro 11 Help Manual514

Copyright © 1982-2024 R:BASE Technologies, Inc.

11 Useful Resources

. R:BASE Home Page: https://www.rbase.com

. Up-to-Date R:BASE Updates: https://www.rbaseupdates.com

. Current Product Details and Documentation: https://www.rbase.com/rbg11

. Support Home Page: https://www.rbase.com/support

. Product Registration: https://www.rbase.com/register

. Official R:BASE Facebook Page: https://www.facebook.com/rbase

. Sample Applications: https://www.razzak.com/sampleapplications

. Technical Documents (From the Edge): https://www.razzak.com/fte

. Education and Training: https://www.rbase.com/training

. Product News: https://www.rbase.com/news

. Upcoming Events: https://www.rbase.com/events

. R:BASE Online Help Manual: https://www.rbase.com/support/rsyntax

. Form Properties Documentation: https://www.rbase.com/support/FormProperties.pdf

. R:BASE Beginners Tutorial: https://www.rbase.com/support/rtutorial

. R:BASE Solutions (Vertical Market Applications): https://www.rbase.com/products/rbasesolutions

https://www.rbase.com
https://www.rbaseupdates.com
https://www.rbase.com/rbg11
https://www.rbase.com/support
https://www.rbase.com/register
https://www.facebook.com/rbase
https://www.razzak.com/sampleapplications
https://www.razzak.com/fte
https://www.rbase.com/training
https://www.rbase.com/news
https://www.rbase.com/events
https://www.rbase.com/support/rsyntax
https://www.rbase.com/support/FormProperties.pdf
https://www.rbase.com/support/rtutorial
https://www.rbase.com/products/rbasesolutions

Part

XII

Oterro 11 Help Manual516

Copyright © 1982-2024 R:BASE Technologies, Inc.

12 Feedback

Suggestions and Enhancement Requests:

From time to time, everyone comes up with an idea for something they'd like a software product to do
differently.

If you come across an idea that you think might make a nice enhancement, your input is always
welcome.

Please submit your suggestion and/or enhancement request to the R:BASE Developers' Corner Crew
(R:DCC) and describe what you think might make an ideal enhancement. In R:BASE, the R:DCC Client is
fully integrated to communicate with the R:BASE development team. From the main menu bar, choose
"Help" > "R:DCC Client". If you do not have a login profile, select "New User" to create one.

If you have a sample you wish to provide, have the files prepared within a zip archive prior to initiating
the request. You will be prompted to upload any attachments during the submission process.

Unless additional information is needed, you will not receive a direct response. You can periodically check
the status of your submitted enhancement request.

If you are experiencing any difficulties with the R:DCC Client, please send an e-mail to rdcc@rbase.com.

Reporting Bugs:

If you experience something you think might be a bug, please report it to the R:BASE Developers'
Corner Crew. In R:BASE, the R:DCC Client is fully integrated to communicate with the R:BASE
development team. From the main menu bar, choose "Help" > "R:DCC Client". If you do not have a login
profile, select "New User" to create one.

You will need to describe:

· What you did, what happened, and what you expected to happen
· The product version and build
· Any error message displayed
· The operating system in use
· Anything else you think might be relevant

If you have a sample you wish to provide, have the files prepared within a zip archive prior to initiating
the bug report. You will be prompted to upload any attachments during the submission process.

Unless additional information is needed, you will not receive a direct response. You can periodically check
the status of your submitted bug.

If you are experiencing any difficulties with the R:DCC Client, please send an e-mail to rdcc@rbase.com.

mailto:rdcc@rbase.com
mailto:rdcc@rbase.com

Index 517

Copyright © 1982-2024 R:BASE Technologies, Inc.

Index
- - -
-- 202

- # -
#TABLEORDER 316

- { -
{} 202

- A -
ABORT TRIGGER 499

ABS 370

ABSOLUTE 452

ACCESS 349

access rights 441

Accessing Tables and Database Tables 488

ACOS 370

add index 472

ADDDAY 370

ADDFRC 370

ADDHR 370

ADDMIN 371

ADDMON 371

ADDSEC 371

ADDYR 371

advantages of 506

AFTER Trigger 499

aggregate 445

aggregate functions 445

AINT 371

Alias 191, 261

AliasList 191

Aligning Decimals 401

ALL 349

ALTER TABLE 185, 499

AND 297, 376

ANINT 371

Another way is using the LIST command at the R>
Prompt. To safely indicate which tables are temporary
tables in the LIST or LIST TABLES command, you will
now see a "(T)" in front of the table name 505

ANSI 249, 297, 376

APPEND 190

AS 287

ASCII 349, 478

ASIN 371

ATAN 372

ATAN2 372

ATTACH 191, 264

AUTOCHK 193, 504

AUTOCOMMIT 298, 376

AUTOCONVERT 298

AUTODROP 298, 377

AUTONUM 196, 349

AUTORECOVER 299

AUTOROWVER 299

AUTOSKIP 299, 377

AUTOSYNC 299

AUTOUPGRADE 299

average 270, 445, 457

AVG 270, 445

- B -
BEFORE Trigger 499

BELL 300, 377

BIGINT 467

BIGNUM 467

Binary 445

BLANK 300, 377

BLOB 445, 446

BLOB data 446

BLOB Editor 445, 446

Block 383

BOOLEAN 300, 467

BREAK 199, 346

BRND 372

BSTR 467

BUILD 377

- C -
CALC 319

CALL 199, 493, 494, 495

CAPTION 300

Oterro 11 Help Manual518

Copyright © 1982-2024 R:BASE Technologies, Inc.

CASE 300, 346, 377

Case Folding 478

Case-Sensitive Collating 478

CHAR 372

character code 478

Character Folding 478

Check Message Status 403

CHECKPROP 300

CHKCUR 372

CHKFILE 373

CHKFUNC 373

CHKKEY 373

CHKVAR 373

CLEAR 200, 301, 339, 377, 481, 489

Clearing Buffers 481

CLIPBOARD 301

CLIPBOARDTEXT 377

CLOSE 201, 448, 457

CMPAUSE 302

COLLATE 478

COLLATEC 478

Collating 478

COLOR 302, 378

Command 184, 270

Command Categories 185

Commands 185, 190, 191, 193, 196, 199, 200, 201,
202, 203, 205, 206, 209, 210, 214, 217, 220, 221, 222,
223, 226, 228, 229, 230, 234, 236, 238, 239, 242, 248,
249, 251, 252, 254, 255, 256, 258, 259, 261, 264, 266,
267, 273, 276, 277, 278, 279, 282, 287, 289, 291, 293,
294, 295, 296, 343, 346, 349, 351, 355, 360, 361, 363,
365

comment 202, 379

COMMENT ON 203

COMMENTS 349

COMPATIB 302

COMPUTE 445

COMPUTER 378

Concurrency Control 485

configuration 31, 185, 321

configuration file 446, 478

CONNECT 504

connection 217

Connection Attributes 176

Connection Handles 179

CONNECTIONS 378

Constraints 349, 447

CONTINUE 205

Control Structures 185

CONVERT 205

copyright 20

COS 373

COSH 373

count 270, 445, 457

create index 206, 472

CREATE SCHEMA 209

CREATE TABLE 210, 499, 504

CREATE VIEW 214, 504

CSV 349

CTR 374

CTXT 374

CURRDIR 378

CURRDRV 378

CURRENCY 303, 378, 467

CURRENT OF cursorname 448

CURRENTPRINTER 378

CURRNUMALOC 419

cursor 201, 217, 226

CURSORCOL 419

CURSORROW 419

CVAL 374, 376, 377, 378, 379, 380, 381, 382, 383,
384, 385, 386, 387, 388, 389, 390, 391

CVTYPE 391

- D -
DATA 349

Data Browser 446

Data Designer 504

Data Editor 446

Data Source 261, 264

Data Type 467

DATABASE 339, 379

Database Connect 185

database files 466

DATE 304, 379, 467

DATE CENTURY 379

DATE FORMAT 379

DATE SEQUENCE 379

DATE YEAR 379

DATETIME 392, 467

dBASE 191

DBASE_TABLES 349

DBCONN 217

DBPATH 379, 380

DBSIZE 419

DEBUG 31, 305, 321, 380

Index 519

Copyright © 1982-2024 R:BASE Technologies, Inc.

debugging 31

DECIMAL 467

DECLARE CURSOR 217, 226, 448

DECRYPT 392

decryption 249

DEFAULT 346

DELETE 220, 221, 448, 496, 499

DELETE DUPLICATES 221

delete index 472

DELFUNC 392

DELIMIT 306, 380

descriptor 177

Descriptor Handles 180

DETACH 222

DEXTRACT 392

DIM 392

DISCONNECT 504

DISKSPACE 419

Displaying Muti-User Locks 482

DISTINCT 270, 457

DLCALL 393

DLFREE 398

DLL 509

DLLOAD 398

DNW 398

DOUBLE 467

DRIVES 380

DROP 223, 448, 496, 504

drop index 472

DSN 264

DSN-Less 264, 266, 267

duplicate 221

DWE 399

DWRD 399

- E -
ECHO 306, 380

EDITOR 306, 380

EEP Specific 185

ENCRYPT 249, 399

encryption 249, 392, 399

ENDIF 234

ENDSW 346

ENDSWITCH 346

ENDWHILE 365

Environment Handles 179

ENVVAL 399

EOFCHAR 307, 381

EQNULL 307, 381

ERROR 381

ERROR DETAIL 381

Error Handling 185

Error Message 308, 403

ERROR MESSAGES 308

ERROR VARIABLE 309, 381

errors 509

ESCAPE 310, 381

example 449, 450, 452, 457

Examples 496

EXCEPT 278

EXP 399

EXPAND 478

Expansion Character 478

EXPLAIN.DAT 457

explicit 501

EXPLODE 310, 381

- F -
FALSE 300

FASTFK 311, 381

FASTLOCK 311, 321, 382

feedback 312, 382, 516

FETCH 226, 276, 448

File Access 185

file association 239

FILENAME 400

FILES 312, 382

FINDFILE 400

FIRST 452

FIXED 312, 382

FLOAT 400, 467

FOLD 478

FONT 312

font name 249

font size 249

foreign data source 264, 267

foreign database 261

foreign key 447

foreign table 261

FORM_CONTROL_TYPE 419

FORM_DIRTY_FLAG 420

FORMAT 400, 401

Formatting Currency 401

Formatting Text 401

Oterro 11 Help Manual520

Copyright © 1982-2024 R:BASE Technologies, Inc.

FROM 277

FULL OUTER JOIN 502

full text index 471

Function 435

Function Categories 369

functions 369, 370, 371, 372, 373, 374, 392, 393,
398, 399, 400, 401, 402, 403, 405, 406, 407, 408, 409,
410, 411, 413, 416, 417, 418, 419, 420, 421, 422, 423,
424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434,
435, 436, 437, 438, 439, 440, 441, 442, 443, 445, 457

FV1 402

FV2 402

- G -
GET 228, 494, 496

GETDATE 402

GetDriveReady 403

GetIPAddress 403

GETKEY 402

GetLock 404

GetMACAddr 405

GETVAL 403, 404, 405, 406, 407

GetVolumeID 406

GOTO 185, 229

GRANT 230

GROUP BY 289, 361, 450

GUID 467

- H -
handles 177

HAVING 291, 363

HEADINGS 313, 382

HTML 295, 407

- I -
ICAP 407

ICAP1 407

ICAP2 407

ICAP3 407

ICHAR 408

IDAY 408

IDIM 408

IDOY 408

IDQUOTES 261, 313, 382

IDWK 409

IF 234

IF/ENDIF 234

IFCASEEQ 408

IFEQ 408, 409

IFEXISTS 409

IFF 409

IFGE 410

IFGT 410

IFLE 410

IFLT 411

IFNE 411

IFNULL 411

IFRC 411

IFWINDOW 411

IHASH 411, 472

IHR 413

IINFO 413

ILY 416

IMIN 417

IMON 417

implicit 501

index 470, 471, 472, 474, 475, 476, 477

index efficiency 476

Indexes 349, 470

indexing computed columns 475

indexing long text 472

INDEXONLY 313

Index-Only Retrieval 475

INNER 274

INNER JOIN 501, 502

INSERT 236, 313, 382, 446, 457, 499

INT 417

INTEGER 467

INTENSITY 382

INTERSECT 501

INTERVAL 314, 382, 488

INTO 276

ISALPHA 417

ISDIGIT 417

ISEC 417

ISLOWER 418

ISRUNTIME 420

ISSPACE 418

ISTAT 418, 419, 420, 421, 422

ISTR 423

ISUPPER 423

ITEMCNT 423

Index 521

Copyright © 1982-2024 R:BASE Technologies, Inc.

IWOY 424

IYR 424

IYR4 424

- J -
JDATE 425

join 274, 501, 502

JOIN Types 502

- K -
key 447

KEYMAP 314

- L -
LABEL 238

LAST 383, 452

LAST ERROR 383

last modification 258

LAST_MOD 258

LastBlock 383

LastBlockTable 383

LASTKEY 425

LAUNCH 239

LAVG 425, 445

LAYOUT 314, 383

LCFOLD 478

LEFT OUTER JOIN 502

license 21

LIMIT 279

LIMITNUMALLOC 420

LINEEND 314, 383

LINES 315, 383

linked 449

LIST 230, 496, 499, 505

LISTOF 270, 445

LJS 426

LMAX 426, 445

LMIN 426, 445

LOAD 242, 319, 446

load BLOB data 446

LOCK 315, 482

Locking Rows with the SET ROWLOCKS Command

 483

LOG 31, 321, 426

LOG10 427

LOOKUP 316, 383

LSTDEV 427

LSUM 427

LTRIM 427

LUC 427

LVARIANCE 428

- M -
MAC Address 405

MAKEUTF8 428

MANOPT 316, 383

MANY 316, 383

MAX 270, 445

MAXFREE 420

MAXIMUM 270, 445

MAXNUMALLOC 420

MAXTRANS 316, 384

MDI 384

MEMORY 420

MESSAGES 317, 384

MICRORIM_EXPLAIN 457

MIGRATE 248

MIN 270, 445

MINIMUM 270, 445

MIRROR 317, 384

MOD 428

MODAL 238

MOUSE 317

MOUSECOL 420

MOUSEROW 421

MULTI 318, 321, 384, 489

multi column index 471

MULTI ON 479

multi-column index 471

multi-table cursor 449

multithreading 181

Multi-User 480, 488

Multi-User Concurrency Control for Tables 487

Multi-User Mode 479, 484, 485, 486

- N -
NAME 318, 384

NAMEWIDTH 318

ndxlist 191

Oterro 11 Help Manual522

Copyright © 1982-2024 R:BASE Technologies, Inc.

nested cursor 450

Nested JOIN 274, 279

NETUSER 384

Network 479, 484, 488

NEXT 429, 452

NINT 429

NOCALC 319

non-updatable cursor 450

not NULL 447

NOTE 467

NOTE_PAD 320, 384

NULL 320, 384

NUMERIC 467

- O -
Object Manipulation 185

Objects 445

ODBC 264, 387

OFFMESS 384

OLDLINE 385

ONELINE 320, 385

OPEN 248, 448, 452, 457

Opening Designer Modules 185

Operating System 185

optimize 472

optimizing cursors 457

optimizing indexes 472

ORDER BY 293, 360

ORDER BY with indexes 475

OTDEBUG 31, 321

OUTER JOIN 279, 501, 502

OUTPUT 249

Output Devices 185

OWNER 348

- P -
PACK 251, 478, 504

PAGECOL 421

PAGELOCK 321

PAGEMODE 322, 385

PAGEROW 421

parameter 239

partial index 471

PASSTHROUGH 323, 385

password 249

PAUSE 302

PDF 249

permission 441

PLATFORM 385

PlayAndExit 406

PlayAndWait 407

PLUS 323, 385

PMT1 429

PMT2 429

port 385

PORTS 385, 487

POSFIXED 323, 385

primary key 447

PRINTER 249, 324

PRINTERS 386

PRIOR 452

PRN_COLLATION 386

PRN_COLORMODE 386

PRN_COPIES 386

PRN_DUPLEXMODE 386

PRN_ORIENTATION 386

PRN_QUALITY 386

PRN_SIZE 386

PRN_SOURCE 386

PRN_STATUS 386

PROCEDURE 324

Program Communication 185

PROGRESS 324

PROJECT 252, 504

PSTDEV 270

Punctuating Long Numbers 401

PUT 254, 494

PV1 430

PV2 430

PVARIANCE 270

- Q -
QUALCOLS 324, 387

QUALKEY 261, 387

QUALKEY TABLES 387

QUALKEYS 387

Query Language 185

QUOTES 325, 387

Index 523

Copyright © 1982-2024 R:BASE Technologies, Inc.

- R -
R:BASE 21

RANDOM 430

RATE1 430

RATE2 430

RATE3 431

RB1SIZE 421

RB2SIZE 421

RB3SIZE 421

RB4SIZE 422

RBADMIN 325

RBBEDIT 445, 446

RBTI_ElapsedTime 312

RBTI_RowsDeleted 312

RBTI_RowsInserted 312

RBTI_RowsUpdated 312

RBTI_TIMEOUT 331

RDATE 431

REAL 467

RECYCLE 325

Reference Topics 447, 479, 484, 485, 486

REFRESH 326, 387

RELATIVE 452

RELOAD 255, 504

RENAME 256, 496

reserved words 490

RESET 258, 452, 457

resettable cursor 452

RESTORE 487

Restricted Commands 497

RETURN 494

REVERSE 326, 387, 431

REVOKE 259

RIGHT OUTER JOIN 502

RJS 431

RNDDOWN 431

RNDUP 432

ROUND 431, 432, 433

round down 431

round up 432

ROWLOCKS 321, 326, 387, 483

RTIME 433

RTRIM 434

Rule 489

RULES 261, 327, 349, 387

RX3 471

- S -
SATTACH 261, 264, 266, 267, 324

SCONNECT 261, 264, 266, 267

SCRATCH 327, 387

Managing Files 481

scratch file 506

screen 249

SCREENSIZE 387

SCROLL 217, 452

scrolling cursor 452

SDETACH 261, 266, 267

SDISCONNECT 261, 264, 266, 267

SELECT 267, 270, 273, 274, 276, 277, 278, 279,
282, 287, 289, 291, 293, 294, 295, 445, 446, 448, 499,
501

SELECT Functions 270

SELMARGIN 327, 388

SEMI 328, 388

SERVER 328, 388

SERVER_TABLES 349

SET 296, 297, 298, 299, 300, 301, 302, 303, 304,
305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315,
316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326,
327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337,
338, 339

SET PROCEDURE 494

SET VARIABLE 343, 446

Setting Exclusive Table Locks 482

SFIL 434

SGET 434

SHORTNAME 328

SHOW 339

SIGN 434

SIN 434

SINGLE 329, 388

single user 489

Single-User Mode 489

SINH 434

SKEEP 435

SKEEPI 435

SLEN 435

SLOC 436

SLOCI 436

SLOCP 436

SMALLINT 467

smart indexing 477

Oterro 11 Help Manual524

Copyright © 1982-2024 R:BASE Technologies, Inc.

SMOVE 437

SORT 329, 388

SORTMENU 330, 388

SOUNDEX 437

SPUT 437

SQL 185, 261, 457, 492, 501

SQLAllocConnect 35

SQLAllocEnv 37

SQLAllocHandle 38

SQLAllocStmt 44

SQLBindCol 46

SQLBindParameter 47

SQLBrowseConnect 48

SQLBulkOperations 50

SQLCancel 59

SQLCloseCursor 60

SQLCODE 448

SQLColAttributes 62

SQLColumnPrivileges 65

SQLColumns 67

SQLConnect 69

SQLDataSources 71

SQLDescribeCol 73

SQLDescribeParam 75

SQLDisconnect 76

SQLDriverConnect 77

SQLDrivers 80

SQLEndTran 82

SQLError 84

SQLExecDirect 85

SQLExecute 87

SQLExtendedFetch 89

SQLFetch 92

SQLFetchScroll 93

SQLForeignKeys 98

SQLFreeConnect 101

SQLFreeEnv 106

SQLFreeHandle 103

SQLFreeStmt 107

SQLGetConnectAttr 109

SQLGetConnectOption 111

SQLGetCursorName 113

SQLGetData 115

SQLGetDiagRec 117

SQLGetFunctions 119

SQLGetInfo 122

SQLGetStmtAttr 120

SQLGetStmtOption 126

SQLGetTypeInfo 128

SQLMoreResults 130

SQLNativeSql 131

SQLNumParams 132

SQLNumResultCols 133

SQLParamOptions 134

SQLPrepare 135

SQLPrimaryKeys 137

SQLProcedureColumns 139

SQLProcedures 141

SQLPutData 143

SQLRowCount 144

SQLSetConnectAttr 145

SQLSetConnectOption 150

SQLSetCursorName 151

SQLSetEnvAttr 154

SQLSetPos 160

SQLSetScrollOptions 161

SQLSetStmtAttr 157

SQLSetStmtOption 161

SQLSpecialColumns 163

SQLStatistics 166

SQLTablePrivileges 168

SQLTables 170

SQLTransact 172

SQRT 437

SRPL 437

SSTRIP 438

SSUB 439

SSUBCD 439

standard deviation 427, 445

state transitions 181

Statement Handles 180

static variable 339

STATICDB 321, 330, 388

STATICVAR 339

STDEV 445

Stored Procedure 493, 494, 496, 497, 498, 499,
500, 501

Stored Procedures 185

STP_RETURN 494, 495

STRIM 439

STRUCTURE 349

Structured Query Language 492

sub-SELECT 287, 502

sum 270, 427, 445, 457

support 21

SWITCH 346

Index 525

Copyright © 1982-2024 R:BASE Technologies, Inc.

SWITCH/ENDSW 346

Syntax 184

SYS_ADJ_FACTOR 476

SYS_DUP_FACTOR 476

SYS_INDEXES 476

SYS_NEW 500

SYS_OLD 501

SYS_PROC_COLS 494, 498, 499

SYS_PROC_LEN 494

SYS_PROC_MODS 498, 499

SYS_PROCEDURES 498, 499

SYS_TRIGGERS 498, 499

system requirements 24

SYSTMP_COMMENTS 504

SYSTMP_CONSTRAINTS 504

SYSTMP_DEFAULTS 504

SYSTMP_RULES 504

SYSTMP_SERVERS 504

SYSTMP_TRIGGERS 504

SYSTMP_VIEWS 504

- T -
table 258

Table Locks 488

tablealias 191

TABLEDEF 349

TABLES 349

TAN 440

TANH 440

TDWK 440

TEMPORARY 191, 230, 259, 261

temporary table 503, 504, 505, 506

temporary view 503, 504, 505, 506

TERM1 440

TERM2 440

TERM3 441

TEXT 467

TEXTRACT 441

There are two ways to differentiate between regular
and temporary tables/views. One way is to view the
Tables or Views menu within the Database Explorer.
You will notice that any temporary tables or views will
have a faded icon next to the appropriate table/view
name. 505

TIME 330, 388, 467

TIMEFORMAT 388

TIMEOUT 331, 388

TIMESEQUENCE 388

TINFO 441

TMON 442

TOLERANCE 331, 389

TOP 273

TOTALALLOC 422

TOTALFREE 422

TOTALLOCKS 422

TOTALREADS 422

TOTALWRITES 422

TRACE 332, 389, 465, 496

TRANSACT 332, 389

Transaction Processing 185

TRANSLATE 442

Trigger 493, 494, 499, 500, 501

TRIGGERS 349

TRIM 442

troubleshooting 509

TRUE 300

TURBO 348

types 177

- U -
UINOTIF 333

ULC 443

Unicode 334

UNION 294, 501

UNIQUE 206

unique index 447, 471

unique key 447

UNLOAD 319, 349, 446

UPDATE 351, 448, 457, 499

USER 333, 389

USERAPP 389

USERDOMAIN 389

USERID 389

UTF8 249, 334, 428

UTF-8 334

Utilities 185

- V -
VARBIT 446, 467

VARCHAR 446, 467

Variable Handling 185

variance 428, 445

Oterro 11 Help Manual526

Copyright © 1982-2024 R:BASE Technologies, Inc.

VERIFY 334, 389, 483

Verify Data Entry with SET VERIFY Command 483

VERSION 389

VERSION BITS 390

VERSION BUILD 390

VERSION SYSTEM 390

view 258

VIEWS 349

- W -
WAIT 335, 390, 488

Wait Until Finished 239

WALKMENU 336, 390

WHERE 221, 282, 355, 361, 363, 501

WHERE Clauses with indexes 474

WHERE CURRENT 217, 500, 501

WHILE 365

WHILE loop 448

WHILE/ENDWHILE 365

WHILEOPT 336, 390

WIDENOTE 467

WIDETEXT 467

WIDTH 336, 390

WINAUTH 337

WINBEEP 337, 390

WINDOWSPRINTER 390

WRAP 338, 391

WRITE 446

WRITECHK 338, 391

- Z -
ZERO 339, 391

ZOOMEDIT 339, 391

Notes

	Introduction
	Introducing Oterro 11
	Copyrights
	R:BASE for Windows
	Oterro License Summary
	Complimentary Support

	Programming
	System Requirements
	Windows Programming
	OTERRO11.CFG File
	Open Database Connectivity

	How to Use the Oterro Engine
	Data Access Objects (DAO)
	Configuring the Database Environment
	Available Commands
	Handling Data of Variable Lengths
	Terminating Transactions and Disconnecting
	Error Checking
	Oterro Debug Setting
	Retrieving Status and Error Information
	General Programming Tips

	Oterro Engine Functions
	SQLAllocConnect
	SQLAllocEnv
	SQLAllocHandle
	SQLAllocStmt
	SQLBindCol
	SQLBindParameter
	SQLBrowseConnect
	SQLBulkOperations
	SQLCancel
	SQLCloseCursor
	SQLColAttributes
	SQLColumnPrivileges
	SQLColumns
	SQLConnect
	SQLDataSources
	SQLDescribeCol
	SQLDescribeParam
	SQLDisconnect
	SQLDriverConnect
	SQLDrivers
	SQLEndTran
	SQLError
	SQLExecDirect
	SQLExecute
	SQLExtendedFetch
	SQLFetch
	SQLFetchScroll
	SQLForeignKeys
	SQLFreeConnect
	SQLFreeHandle
	SQLFreeEnv
	SQLFreeStmt
	SQLGetConnectAttr
	SQLGetConnectOption
	SQLGetCursorName
	SQLGetData
	SQLGetDiagRec
	SQLGetFunctions
	SQLGetStmtAttr
	SQLGetInfo
	SQLGetStmtOption
	SQLGetTypeInfo
	SQLMoreResults
	SQLNativeSql
	SQLNumParams
	SQLNumResultCols
	SQLParamOptions
	SQLPrepare
	SQLPrimaryKeys
	SQLProcedureColumns
	SQLProcedures
	SQLPutData
	SQLRowCount
	SQLSetConnectAttr
	SQLSetConnectOption
	SQLSetCursorName
	SQLSetEnvAttr
	SQLSetStmtAttr
	SQLSetPos
	SQLSetScrollOptions
	SQLSetStmtOption
	SQLSpecialColumns
	SQLStatistics
	SQLTablePrivileges
	SQLTables
	SQLTransact

	ODBC Reference Topics
	Connection Attributes
	Descriptors
	Types of Descriptors

	Handles
	Environment Handles
	Connection Handles
	Statement Handles
	Descriptor Handles
	State Transitions

	Multithreading

	R:BASE Database Commands
	Reading Command Syntax
	Command Categories
	A
	ALTER TABLE
	APPEND
	ATTACH
	AUTOCHK
	AUTONUM

	B
	BREAK

	C
	CALL
	CLEAR
	CLOSE
	COMMENT
	COMMENT ON
	CONTINUE
	CONVERT
	CREATE INDEX
	CREATE SCHEMA
	CREATE TABLE
	CREATE VIEW

	D
	DBCONN
	DECLARE CURSOR
	DELETE
	DELETE DUPLICATES
	DETACH
	DROP

	F
	FETCH

	G
	GET
	GOTO
	GRANT

	I
	IF/ENDIF
	INSERT

	L
	LABEL
	LAUNCH
	LOAD

	M
	MIGRATE

	O
	OPEN
	OUTPUT

	P
	PACK
	PROJECT
	PUT

	R
	RELOAD
	RENAME
	RESET
	REVOKE
	RULES

	S
	SATTACH
	SCONNECT
	SDETACH
	SDISCONNECT
	SELECT
	SELECT Functions
	TOP
	INNER JOIN
	INTO
	FROM
	EXCEPT
	LIMIT
	OUTER JOIN
	WHERE
	Sub-SELECT
	AS
	GROUP BY
	HAVING
	ORDER BY
	UNION
	HTML

	SET
	AND
	ANSI
	AUTOCOMMIT
	AUTOCONVERT
	AUTODROP
	AUTORECOVER
	AUTOROWVER
	AUTOSKIP
	AUTOSYNC
	AUTOUPGRADE
	BELL
	BLANK
	BOOLEAN
	CAPTION
	CASE
	CHECKPROP
	CLEAR
	CLIPBOARD
	CMPAUSE
	COLOR
	COMPATIB
	CURRENCY
	DATE
	DEBUG
	DELIMIT
	ECHO
	EDITOR
	EOFCHAR
	EQNULL
	ERROR MESSAGE
	ERROR MESSAGES
	ERROR VARIABLE
	ESCAPE
	EXPLODE
	FASTFK
	FASTLOCK
	FEEDBACK
	FILES
	FIXED
	FONT
	HEADINGS
	IDQUOTES
	INDEXONLY
	INSERT
	INTERVAL
	KEYMAP
	LAYOUT
	LINEEND
	LINES
	LOCK
	LOOKUP
	MANOPT
	MANY
	MAXTRANS
	MESSAGES
	MIRROR
	MOUSE
	MULTI
	NAME
	NAMEWIDTH
	NOCALC
	NOTE_PAD
	NULL
	ONELINE
	OTDEBUG
	PAGELOCK
	PAGEMODE
	PASSTHROUGH
	PLUS
	POSFIXED
	PRINTER
	PROCEDURE
	PROGRESS
	QUALCOLS
	QUOTES
	RBADMIN
	RECYCLE
	REFRESH
	REVERSE
	ROWLOCKS
	RULES
	SCRATCH
	SELMARGIN
	SEMI
	SEMI (Special Character)
	SERVER
	SHORTNAME
	SINGLE
	SORT
	SORTMENU
	STATICDB
	TIME
	TIMEOUT
	TOLERANCE
	TRACE
	TRANSACT
	UINOTIF
	USER
	UTF8
	VERIFY
	WAIT
	WALKMENU
	WHILEOPT
	WIDTH
	WINAUTH
	WINBEEP
	WRAP
	WRITECHK
	ZERO
	ZOOMEDIT

	SET STATICVAR
	SET VARIABLE
	SWITCH/ENDSW

	T
	TURBO

	U
	UNLOAD
	UPDATE

	W
	WHERE
	ORDER BY
	GROUP BY
	HAVING

	WHILE/ENDWHILE

	R:BASE Database Functions
	Function Categories
	A
	ABS
	ACOS
	ADDDAY
	ADDFRC
	ADDHR
	ADDMIN
	ADDMON
	ADDSEC
	ADDYR
	AINT
	ANINT
	ASIN
	ATAN
	ATAN2

	B
	BRND

	C
	CHAR
	CHKCUR
	CHKFILE
	CHKFUNC
	CHKKEY
	CHKVAR
	COS
	COSH
	CTR
	CTXT
	CVAL
	AND
	ANSI
	AUTOCOMMIT
	AUTODROP
	AUTOSKIP
	BELL
	BLANK
	BUILD
	CASE
	CLEAR
	CLIPBOARDTEXT
	COLOR
	COMPUTER
	CONNECTIONS
	CURRDIR
	CURRDRV
	CURRENCY
	CURRENTPRINTER
	DATABASE
	DATE
	DATE CENTURY
	DATE FORMAT
	DATE SEQUENCE
	DATE YEAR
	DBCOMMENT
	DBPATH
	DEBUG
	DELIMIT
	DRIVES
	ECHO
	EDITOR
	EOFCHAR
	EQNULL
	ERROR
	ERROR DETAIL
	ERROR VARIABLE
	ESCAPE
	EXPLODE
	FASTFK
	FASTLOCK
	FEEDBACK
	FILES
	FIXED
	HEADINGS
	IDQUOTES
	INSERT
	INTENSITY
	INTERVAL
	LAST BLOCK TABLE
	LAST ERROR
	LAYOUT
	LINEEND
	LINES
	LOOKUP
	MANOPT
	MANY
	MAXTRANS
	MDI
	MESSAGES
	MIRROR
	MULTI
	NAME
	NETUSER
	NOTE_PAD
	NULL
	OFFMESS
	OLDLINE
	ONELINE
	PAGEMODE
	PASSTHROUGH
	PLATFORM
	PLUS
	POSFIXED
	PORTS
	PRINTERS
	PRN_STATUS
	PRN_ORIENTATION
	PRN_SIZE
	PRN_SOURCE
	PRN_QUALITY
	PRN_COPIES
	PRN_COLORMODE
	PRN_DUPLEXMODE
	PRN_COLLATION
	QUALCOLS
	QUALKEYS
	QUALKEY TABLES
	QUOTES
	REFRESH
	REVERSE
	ROWLOCKS
	RULES
	SCRATCH
	SCREENSIZE
	SELMARGIN
	SEMI
	SERVER
	SINGLE
	SORT
	SORTMENU
	STATICDB
	TIME
	TIME FORMAT
	TIME SEQUENCE
	TIMEOUT
	TOLERANCE
	TRACE
	TRANSACT
	USER
	USERAPP
	USERDOMAIN
	USERID
	VERIFY
	VERSION
	VERSION BITS
	VERSION BUILD
	VERSION SYSTEM
	WAIT
	WALKMENU
	WHILEOPT
	WIDTH
	WINBEEP
	WINDOWSPRINTER
	WRAP
	WRITECHK
	ZERO
	ZOOMEDIT

	CVTYPE

	D
	DATETIME
	DECRYPT
	DELFUNC
	DEXTRACT
	DIM
	DLCALL
	DLFREE
	DLLOAD
	DNW
	DWE
	DWRD

	E
	ENCRYPT
	ENVVAL
	EXP

	F
	FILENAME
	FINDFILE
	FLOAT
	FORMAT
	Aligning Decimals
	Formatting Currency
	Formatting Text
	Punctuating Long Numbers

	FV1
	FV2

	G
	GETDATE
	GETKEY
	GETVAL
	CheckMessageStatus
	GetDriveReady
	GetIPAddress
	GetLock
	GetMACAddr
	GetVolumeID
	PlayAndExit
	PlayAndWait

	H
	HTML

	I
	ICAP
	ICAP1
	ICAP2
	ICAP3
	IFCASEEQ
	ICHAR
	IDAY
	IDIM
	IDOY
	IDWK
	IFEQ
	IFEXISTS
	IFF
	IFGE
	IFGT
	IFLE
	IFLT
	IFNE
	IFNULL
	IFRC
	IFWINDOW
	IHASH
	IHR
	IINFO
	ILY
	IMIN
	IMON
	INT
	ISALPHA
	ISDIGIT
	ISEC
	ISLOWER
	ISSPACE
	ISTAT
	CURRNUMALLOC
	CURSORCOL
	CURSORROW
	DBSIZE
	DISKSPACE
	FORM_CONTROL_TYPE
	FORM_DIRTY_FLAG
	ISRUNTIME
	LIMITNUMALLOC
	MAXFREE
	MAXNUMALLOC
	MEMORY
	MOUSECOL
	MOUSEROW
	PAGECOL
	PAGEROW
	RX1SIZE
	RX2SIZE
	RX3SIZE
	RX4SIZE
	TOTALALLOC
	TOTALFREE
	TOTALLOCKS
	TOTALREADS
	TOTALWRITES

	ISTR
	ISUPPER
	ITEMCNT
	IWOY
	IYR
	IYR4

	J
	JDATE

	L
	LASTKEY
	LAVG
	LJS
	LMAX
	LMIN
	LOG
	LOG10
	LSTDEV
	LSUM
	LTRIM
	LUC
	LVARIANCE

	M
	MAKEUTF8
	MOD

	N
	NEXT
	NINT

	P
	PMT1
	PMT2
	PV1
	PV2

	R
	RANDOM
	RATE1
	RATE2
	RATE3
	RDATE
	REVERSE
	RJS
	RNDDOWN
	RNDUP
	ROUND
	RTIME
	RTRIM

	S
	SFIL
	SGET
	SIGN
	SIN
	SINH
	SKEEP
	SKEEPI
	SLEN
	SLOC
	SLOCI
	SLOCP
	SMOVE
	SOUNDEX
	SPUT
	SQRT
	SRPL
	SSTRIP
	SSTRIPI
	SSUB
	SSUBCD
	STRIM

	T
	TAN
	TANH
	TDWK
	TERM1
	TERM2
	TERM3
	TEXTRACT
	TINFO
	TMON
	TRANSLATE
	TRIM

	U
	ULC

	R:BASE Reference Topics
	Aggregate Functions
	Binary Large Objects (BLOB)
	Loading BLOB/LOB Data
	Using Commands with BLOBs

	Configuration File
	Constraints
	Cursors Explained
	Multi-Table Cursors
	Non-Updatable Cursors
	Nested Cursors
	Resettable Cursors
	Scrolling Cursors
	Optimizing Cursors
	Questions & Answers

	Database Files
	Data Types
	Indexes
	Choosing the Columns to Index
	Assigning and Removing an Index
	Optimizing Indexes
	Indexing Long TEXT Values
	Using WHERE Clauses with Indexes
	Using ORDER BY with Indexes
	Using Index-Only Retrieval
	Indexing Computed Columns
	Index Efficiency
	Smart Indexing
	Summary

	Information Management with R:BASE
	International Characters
	Multi-User Considerations
	Introduction to Using R:BASE on a Network
	Other Multi-User Considerations
	Clearing Buffers with the SET CLEAR Command
	Managing Scratch Files ($$$)
	Displaying Multi-User Locks
	Using SET LOCK to Set Exclusive Table Locks
	Using the SET VERIFY Command to Verify Data Entry
	Using the SET ROWLOCKS Command to Lock Rows
	Setting Up for Network Use
	Sharing Network Resources
	Setting the Multi-User Default
	Concurrency Control
	Resource Waiting
	Schema Reading Mode with SET STATICDB

	Types of Locks
	Multi-User Concurrency Control and Locking
	Accessing Tables and Databases

	Effects of the SET INTERVAL Command
	Effects of the SET WAIT Command
	Single-User Mode

	Purpose of a Rule
	Reserved Words
	SQL - Information
	Stored Procedures & Triggers
	Creating Stored Procedures
	Using Stored Procedures
	CALL
	GET
	SET PROCEDURE
	Examples

	Restricted Commands
	Stored Procedure System Tables
	Triggers
	Using Triggers
	SYS_NEW
	SYS_OLD

	Table Joins
	Join Types
	More About OUTER JOIN

	Temporary Tables and Views
	Using Temporary Tables/Views
	Differentiate between Regular and Temporary Tables/Views
	Advantages of Temporary Tables/Views

	Troubleshooting
	Technical Support
	Useful Resources
	Feedback

